
Eliciting and Leveraging Input Diversity in
Crowd-Powered Intelligent Systems

by

Jean Y. Song

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Electrical Engineering: Systems)

in The University of Michigan
2019

Doctoral Committee:

Assistant Professor Walter S. Lasecki, Chair
Professor Jason J. Corso
Assistant Research Scientist Brent Griffin
Assistant Professor Juho Kim
Assistant Professor Casey Pierce

Jean Y. Song

jyskwon@umich.edu

ORCID iD: 0000-0003-4379-3971

c© Jean Y. Song 2019

ACKNOWLEDGEMENTS

I would like to thank my advisor Prof. Walter S. Lasecki, the best advisor I can

ask for, who provides endless support to his students and encourages to take on new,

difficult, but the most exciting challenges. I would also like to thank my co-advisor

Prof. Juho Kim who is not only my academic role model, but also the best father

and a husband I have ever met. This dissertation would not have been possible

without the support from my mentors, friends, and family. I would like to thank my

dissertation committee Prof. Jason J. Corso, Dr. Brent Griffin, and Prof. Casey

Pierce who gave me valuable, constructive, and critical feedback to strengthen the

dissertation. I was lucky enough to have excellent mentors during my doctoral study,

including Prof. Jeffrey A. Fessler, Prof. Charles R. Meyer , Prof. Yoonsik Choe,

Prof. Demos Teneketzis, Prof. Sang Won Lee, Dr. Stephanie OKeefe, Dr. Jonathan

Kummerfeld, Prof. Simon Perrault, and Prof. David Fouhey – who I thank for their

valuable support and advices. I am grateful to have smart, thoughtful, and energetic

academic friends all around the world. It was truly fun to interact and collaborate

with these people during my doctoral study: Yan Chen, John Joon Young Chung, Sai

R. Gouravajhala, Jordan Huffaker, Harman Kaur, Rebecca Krosnick, Anthony Liu,

Divya Ramesh, Zhefan Ye, Jinyeong Yim, Stephan J. Lemmer, Michael Xieyang Liu,

Shiyan Yan, Raymond Fok, Alan Lundgard, Fan Yang, Kyle Wang, Minsuk Chang,

Jibon Naher, Yoonseo Choi, Kabdo Choi, Donghoon Han, Kyung Je Jo, Seoyoung

Kim, Hyunwoo Kim, Eunyoung Ko, Sung-Chul Lee, Jisoo Lee, Hyungyu Shin, Saelyne

Yang, Arti Thakur, Evey Huang, Manav Rao, Jaeyoon Song, Hyeungshik Jung, Ray

ii

Hong, Paul Grau, Jaeyeon Lee, and many more. It was my family that supported

me through hard times. I would like to thank all my family members, parents and

brothers and sisters, for their ongoing love.

Last but not least, I am more than grateful to have my husband, Inyong Kwon,

and my lovely son, Koojoon Kwon in my life, who make me want to be a better

person, and work away to change the world be a better place.

iii

TABLE OF CONTENTS

ACKNOWLEDGEMENTS . ii

LIST OF FIGURES . viii

LIST OF TABLES . xvi

ABSTRACT . xvii

CHAPTER

I. Introduction . 1

1.1 Research Questions . 4
1.2 Dissertation Outline and Contributions 4

II. Background . 6

2.1 Crowdsourcing Workflows . 6
2.2 Quality Control in Crowdsourcing 8

2.2.1 Answer Aggregation in Crowdsourcing 9
2.2.2 Pre-Filtering Answers in Crowdsourcing 9
2.2.3 Bias Correction in Crowdsourcing 10

2.3 Diverse Responses from the Crowd 11
2.4 Crowdsourcing Visual Annotations 12

2.4.1 Crowdsourcing Image Annotations 12
2.4.2 Crowdsourcing Video Annotations 13

III. Tool Diversity as a Means of Improving Aggregate Crowd
Performance . 14

3.1 Motivation . 14
3.2 Approach . 18

3.2.1 Motivation from Ensemble Learning 19
3.2.2 Aggregation of Reliable but Biased Tools 20

iv

3.3 FourEyes . 21
3.3.1 Choosing the Tools 21
3.3.2 Designing the Tools 22
3.3.3 System Interfaces 27

3.4 Measuring the Performance of Individual Tools 27
3.4.1 Dataset . 28
3.4.2 Instructions and Payment 28
3.4.3 Segmentation Quality Evaluation 29
3.4.4 Results . 29

3.5 Evaluation of Multi-Tool Aggregation Scheme 33
3.5.1 Method 1.

Single-Tool Aggregation with Majority Voting (Base-
line) . 35

3.5.2 Method 2. Multi-Tool Aggregation with Majority
Voting . 36

3.5.3 Method 3. Multi-Tool Aggregation with EM Method 39
3.6 Error Correction Methods for Multi-Tool Aggregation 44

3.6.1 Morphological Masking to Offset Biases between Dif-
ferent Tools . 45

3.6.2 The Effect of the EM Threshold 51
3.7 Discussion . 52

3.7.1 Compensation of Biases in leveraging Tool Diversity 54
3.7.2 Generalizability . 54
3.7.3 Envisioned Scenario 55

3.8 Summary and Future Work 56

IV. Perspective Diversity: Reconstructing 3D Video Using Par-
ticle Filtering to Aggregate Responses 58

4.1 Motivation . 58
4.2 Approach . 62
4.3 POPUP . 65

4.3.1 Dimension Line Annotation Tool and Self-Filtering . 65
4.3.2 Outlier Removal . 66
4.3.3 Particle Filtering for Position and Orientation Esti-

mation . 68
4.3.4 Implementation . 70

4.4 Evaluation . 71
4.4.1 Experimental Setting 71
4.4.2 Results from Dimension Line Annotation 72
4.4.3 Results from Aggregation and State Estimation . . 76

4.5 Discussion . 81
4.5.1 Inter-Frame Referencing in Video Annotation 81
4.5.2 Factors Affecting Self-Filtering 82
4.5.3 Other Factors Affecting State Estimation Accuracy 82

v

4.6 Summary . 83

V. Knowledge Diversity: Improving Accuracy of 3D Object Re-
construction via Crowdsourced Joint Object Estimation . . . 85

5.1 Motivation . 85
5.2 Evaluation Method . 88

5.2.1 Dataset . 88
5.2.2 Metrics . 88

5.3 C-Reference: Joint Object 3D Location Estimation 90
5.3.1 Iterative Optimize to Estimate the 3D Location of a

Target Object . 90
5.3.2 Joint Object Annotation Aggregation 93
5.3.3 System Implementation 97
5.3.4 Controlled Study of Simulated Annotation Error . . 98

5.4 Eliciting Measurement Estimates 101
5.4.1 Types of Measurement Estimate Annotation 102
5.4.2 Task Interface . 105
5.4.3 Evaluating the Impact of Measure Type 106
5.4.4 Results . 107

5.5 System Evaluation . 109
5.5.1 Experimental Setup 110
5.5.2 Parameter Settings 113
5.5.3 Results . 113

5.6 Discussion . 116
5.6.1 Generalizability of Soft Constraints in Crowdsourcing 116
5.6.2 Combining Machine Optimization and Crowd-generated

Constraints . 117
5.7 Summary . 117

VI. Discussion and Future Directions 119

6.1 Aggregating Diverse Responses from the Crowd 119
6.2 Designing Crowdsourcing Tasks with Diversity in Mind 121
6.3 Joint Entropy and Mutual Information as a Means to Interpret

the Effect of Leveraging Input Diversity 123
6.4 Limitations . 124
6.5 Implications for the Future of Work 125
6.6 Future Directions . 126

6.6.1 Expanding Input Diversity Approach to Real-Time,
Continuous, or Interactive Crowdsourcing 126

6.6.2 Expanding Input Diversity Approaches to Creative
and Cognitively Challenging Tasks 127

6.6.3 Expanding Input Diversity Approach to Include Mi-
nority Groups in Workplaces 128

vi

6.6.4 Input Diversity Approach in Coordinated and De-
pendent Work . 128

VII. Conclusion . 129

BIBLIOGRAPHY . 131

vii

LIST OF FIGURES

Figure

1.1 In this thesis, we introduce three different approaches to demonstrate
the effectiveness and efficiency of leveraging input diversity in crowd-
sourcing tasks to power intelligent systems. The cylinders represent
the target to be annotated, the funnels represent the tool or inter-
face, and the geometrical figures represent the output responses. We
show that systematically eliciting and leveraging diverse responses
from the crowd workers can improve the accuracy of reconstructed
annotations. 3

3.1 This chapter introduces an approach to leveraging tool diversity that
uses multiple different tools for the same task (as in (b)) to improve
aggregate crowd performance by offsetting systematic error biases
that might otherwise result from using any one tool type alone (as
in (a)). Our findings on an image segmentation task demonstrate
that using a combination of tools can significantly increase aggregate
accuracy. 15

3.2 The left diagram shows the hypotheses space of the possible segmen-
tation tools, including the best performing tool (f) and other possible
hypotheses (h1 . . . h4). We are motivated by ensemble learning meth-
ods that construct a combination of alternative hypothesis (h1 and
h2) to approximate the best hypothesis f . The right flowchart shows
a set of workers using two different tools to perform the same task.
An aggregation and correction pipeline can output reliable (consis-
tent) and valid (accurate) aggregate results (f) from two reliable but
not valid answers (h1 and h2). This diagram represents the end-to-
end process of the proposed tool diversity scheme: preparing different
tools, aggregating, and correcting. 20

3.3 Design space we considered when choosing the tools for the study. We
used the Question (Q), Option (O), and Criteria (C) representation
of the design space. 23

viii

3.4 Worker interface of the four segmentation tools used in our experi-
ments. 24

3.5 Precision-recall scatter plot of our four different tools. The different
tools have different error patterns (trade-offs) in terms of precision-
recall metrics. (a) Basic Trace and (b) Drag-and-Drop show high
recall but low precision tendency, implying that the tools are reliable
but not valid. (c) Pin-Placing shows the most scattered pattern,
implying that the tool’s performance highly depends on the query
object, which makes the tool neither reliable nor valid. (d) Floodfill
shows high precision but low recall tendency, implying that the tool
is reliable but not valid. 31

3.6 Original image (top left), ground truth image (bottom left), and ex-
emplar segmentations using the four tools with their precision and
recall values reported on top. (a) Basic Trace, (b) Drag-and-Drop,
(c) Pin-Placing, and (d) Floodfill. The exemplar images represent a
typical output of each tool. 32

3.7 Precision (left), recall (center), and F1 score (right) plots of the cu-
mulative distribution functions of performances of a single worker per
tool. In terms of precision, Floodfill has the most number of workers
with high performance (> 0.8). In terms of recall, Basic Trace has the
most number of workers with high performance. The F1 score per-
formance per worker is similar between tools compared to precision
or recall, because the two offset each other when combined. 33

3.8 Precision (top), recall (middle), and F1 score (bottom) of average
segmentation result of each object and scene. The hollow dots rep-
resent performance for individual objects (average performance of 24
workers who segmented that object), and the filled dots are average
performance over all objects in a single scene. Different scenes are
separated with dotted vertical lines. The average performance of ob-
jects varied across different scenes, but lied in between 0.5 to 0.8 in
terms of the F1 score. 34

3.9 The flowchart shows the EM algorithm we adopted for the optimiza-
tion. Two different segmentation tools, h1 and h2, each with different
biases, b1 and b2 (respectively), pass segmented images to the system.
We estimate the weights, w1 and w2, to approximate the performance
of f . 40

ix

3.10 Accuracy comparison of different aggregation methods based on four
tools: Basic Trace (T1), Drag-and-Drop (T2), Pin-Placing (T3), and
Floodfill (T4). The blue bars are multi-tool aggregation with major-
ity voting and the purple bars are multi-tool aggregation with the
EM method. The red bars are single-tool aggregation of the best
performing tool and the green bars are single-tool aggregation of the
worst performing tool among all constituent tools. * significant at
p < .05; ** significant at p < .01, both compared to EM-based multi-
tool aggregation (two-tailed t-test). Leveraging tool diversity always
performed significantly better than the inferior constituent tool, and
performed at least as well as the superior tool. 42

3.11 The motivational concept of the morphological masking scheme. (a)
S1 indicates one segmentation, and S2 indicates another. The yel-
low GT line indicates ground truth segmentation. Using general
consensus-based aggregation (majority voting or EM), all the pixels
within the area between S1 and S2 have the same level of agreement,
w1. However, to approximate GT, ideally, the area A (S1∩S2

c) needs
a different level of agreement as in (b), with w11 and w12. Our cor-
rection mechanism can approximate GT by giving an updated level of
agreement to pixels by referring to the agreement level of neighboring
pixels. 45

3.12 Results of single-tool aggregation with different threshold parameters
for the morphological masking (T1 =Basic Trace, T2 =Drag-and-
Drop, T3 =Pin-Placing, and T4 =Floodfill). The left column shows
F1 score, precision, and recall for t = 0.2 and the right column shows
F1 score, precision, and recall for t = 0.5. With t = 0.2, the F1 score
degraded by applying the mask. This is because of the large decrease
in the precision with only a small increase in recall. With t = 0.5,
the F1 score improved by applying the mask up to 6%. (except for
Floodfill). This is because the precision largely increased while recall
degraded no larger than 0.23. 49

3.13 F1 scores of multi-tool aggregation with different masking sizes (T1 =Basic
Trace, T2 =Drag-and-Drop, T3 =Pin-Placing, and T4 =Floodfill).
The left column is F1 score of majority voting and the right column
is F1 score of EM-based weighted aggregation. First row is two tools
pairs, second row is three tools combinations, and third row is four
tools combination results. Every multi-tool combination condition
improved accuracy up to 6% by applying our masking technique.
The mask size that induced the largest performance improvement
varied by tool combination types. 50

x

3.14 F1 scores of every tool combination with five different EM thresh-
olds (uniform intervals from 0.1 to 0.9). The result shows that the
maximum performance that can be achieved varies by the threshold
value, implying that correctly setting the EM threshold parameter
can further improve the aggregate accuracy. 51

4.1 We propose a crowd-powered human-machine hybrid system for col-
lecting and aggregating annotations for state estimation of 3D objects
in 2D videos. Our approach leverages particle filtering to accurately
reconstruct 3D scenes from 2D sources even with missing annotations,
which can enable generating simulated realistic large 3D datasets. . 60

4.2 A small pixel error in 2D can be amplified in the Z-dimension, result-
ing in a severe position error. The vehicle image on the left shows
a crowdsourced height entry dimension line annotation (in red) and
the corresponding ground truth (in green). The z-dimension esti-
mate can be calculated from the focal length and the object’s actual
height, which was 721 pixels and 3.59 meters in our experiment, re-
spectively. The three-pixel difference in dimension line leads to a
26-meter difference in 3D location. 61

4.3 Crowd worker instructions and the interactive worker UI. (a) Step-
by-step instructions with good and bad examples are provided. (b)
Interactive Web UI that workers can use to create, adjust, erase, and
redraw dimension lines. 64

4.4 Overview of Popup pipeline. From workers’ dimension line anno-
tation input (on the 2D image) and additional input of real-world
dimension values of the target vehicle (looked up from an existing
knowledgebase), Popup estimates the position and orientation of the
target vehicle in 3D. 67

4.5 Perceptual distance calculation. The distances (arrows) between end-
points (grey dots of the red line) of an annotation (red line) and cor-
responding projected hypothesis 3D line pairs (orange, green, blue,
pink) are calculated. The distances corresponding to the best-fitting
3D line pair are used to calculate probability. These probabilities
are used to determine which hypothesis most closely represents the
annotation line, and therefore the position in 3D space. 69

4.6 Example of dimension line annotations from one of the crowd workers
who participated in our experiment. The yellow bounding box is the
area that the worker cropped in Step 1 of the task, and the red, green,
and blue lines are length, width, and height annotations, respectively,
drawn in Step 2. 72

xi

4.7 Height dimension line error of two different conditions (lower is bet-
ter). The left is without any filtering, and the right is with both
outlier and self-filtering. After filtering, the average error was re-
duced by 20% (p < .05). For each box plot, the circle denotes the
median and the triangle denotes the mean. The lower and upper
edges of boxes denote the 25-th and 75-th percentiles. The whiskers
extend to the most extreme data-points not considered to be outliers. 74

4.8 Average latency of partial and full annotation completion. The full
completion represents typical entries – entries where no worker self-
filtered. The partial completion represents entries that at least one
worker self-filtered. The partial completion entries took an average of
16% more time to annotate (p < .005). For each box plot, the circle
denotes the median and the triangle denotes the mean. The lower
and upper edges of boxes denote the 25-th and 75-th percentiles. The
whiskers extend to the most extreme data-points not considered to
be outliers. 75

4.9 Example of challenging frames where more than 3 out of 5 workers
self-filtered. The cases include limited side view, occlusion, and low
resolution. 78

4.10 (a) Without inter-frame referencing, the particle filter’s performance
is comparable to the baseline. (b) Inter-frame referencing reduced
error significantly. Window size 1 indicates without inter-frame ref-
erecning. (c) Our proposed inter-frame referencing particle filtering
method outperforms the baseline. For each box plot, the circle de-
notes the median and the triangle denotes the mean. The lower and
upper edges of boxes denote the 25-th and 75-th percentiles. The
whiskers extend to the most extreme-most data points that are not
considered to be outliers. 84

5.1 This chapter introduces an approach to crowd-powered estimation of
the 3D location of a target object (here, obj0) by jointly leverag-
ing approximate spatial relationships among other in-scene objects
(obj1-obj4). Our approach lets crowd workers provide approx-
imate measurements of familiar objects to improve collective per-
formance via our novel annotation aggregation technique, which uses
the spatial dependencies between objects as soft constraints that help
guide an optimizer to a more accurate 3D location estimate. 86

xii

5.2 A test image with known ground truth of objects. Inside the white
bounding box is the target object (a cupboard) to be estimated. The
three colored lines on the object represent the ground truth dimension
lines, length (L), width (W), and height (H). Green lines (1 , 2 , and
3) are the reference object annotations. 90

5.3 Step-by-step aggregation of reference object annotations using cross-
ratio and vanishing points. 95

5.4 Overview of the pipeline of our prototype application, C-Reference,
which estimates the 3D location of a target object using a novel joint
object estimation approach. The additional information from the
joint object annotations (1) is aggregated (2) and transformed into
a soft penalty function (3), allowing diverse granularity of approxi-
mate annotations to contribute to improving the system performance. 97

5.5 Results of the controlled studies. (a) Performance characterization of
the optimizer without our annotation-derived penalty function. The
result shows the error characterization result of 748 data points where
each point was generated with zero to 25 pixels noise (five pixels
interval) in random direction for each corner, c1, c2, c3, and c4. Shaded
area is the interquartile range.The result shows that a noise floor of
about 70% error in 3D location estimation is generated even with
zero pixel annotation noise. This noise floor is reduced to zero when
ground truth is set as initial values. (b) Performance characterization
of our proposed joint object annotation aggregation method. The
aggregation result approximates dtarget in Eq. 8. The result shows the
average error of aggregating line 1 and line 3 in Figure 5.2. While
the approximation error of dtarget consistently increases according to
both pixel and measurement noises, the error can be reduced to zero if
no noise is added to the annotations. (c) The result shows the average
error of aggregating line 1 and line 2 in Figure 5.2. Because the
two parallel lines create a degenerate configuration with no unique
solution, the approximation error becomes very noisy. Shaded areas
indicate the interquartile range. 99

xiii

5.6 The interactive worker UI is comprised of three steps in which workers
approximate object measurements and annotate dimension lines. (a)
The instructions and task image step: the reference object to be
annotated is marked with a green box. If the relative condition is
assigned, the UI also provides an indication of the target object (red
box). (b) The measurement-approximation step: each worker sees
different instructions based on the condition they are assigned. (c)
Length line annotation step: crowd workers were instructed to draw
the line that represents the measurement they provided in the second
step. 102

5.7 Cumulative frequency of annotations is plotted with respect to the
percent error of the annotation. No significant difference was ob-
served within each dimension. 106

5.8 Percent error comparison of the different number of reference object
annotations that are aggregated. Adding more reference object an-
notations decreased the percent errors increasingly. (a) shows the
result of all 15 images. There was maximum error reduction of 36%
from adding four reference object annotations, compared to adding
no reference object annotations. (b) shows the results of all 10 in-
door images. There was a maximum error reduction of 39% when
adding four reference object annotations. (c) shows the results of all
five indoor images. Maximum error reduction was 13% when four
annotations were combined. More gain was observed with indoor
images. 111

5.9 Performance comparison between skipped and non-skipped groups
when two reference object annotations are aggregated. Here, we
further divided the groups into six aggregation pairs. The average
percent error of the non-skipped group was always lower than the
skipped group, indicating the penalty function is beneficial. 113

6.1 In this thesis we showed that the benefit from leveraging diverse
input can be systematically achieved by designing the systems with
the input diversity in mind. We showed that by jointly designing the
task division step and the response aggregation step, we can achieve
diverse responses from the workers, which could be aggregated in a
way to improve the final output quality. 120

xiv

6.2 We defined “systematic bias” as reliable but not valid responses to
a system as shown in the first target above. We claim that these
systematic biases could be intentionally induced through the task
design, which could lead to higher aggregate performance when com-
bined appropriately. Responses that are not reliable but valid, or
neither reliable nor valid (as shown in the second and third targets,
respectively) are not desired because the aggregation may not lead
to improved accuracy. Further discussion on the limitations of input
diversity approach will be introduced in Section 6.4. 122

xv

LIST OF TABLES

Table

3.1 A comparison of the four tools across two design elements. 23

3.2 Average performance (and standard deviation) of the four individual
tools. 31

3.3 Average performance (and standard deviation) of majority voting on
single-tool aggregation. 35

3.4 Average (and stdev) of majority voting on two-tool aggregation. . . 38

3.5 Average (and stdev) of majority voting on three-tool aggregation. . 38

3.6 Average (and stdev) of majority voting on four-tool aggregation. . . 38

3.7 Average (and stdev) of the EM method on two-tool aggregation. . . 41

3.8 Average (and stdev) of the EM method on three-tool aggregation. . 41

3.9 Average (and stdev) of the EM method on four-tool aggregation. . . 41

5.1 Median/Average(Standard Deviation) percent error computed as in
Eq. 1 and Eq. 2 to evaluate worker answers for different measure
estimate types. 106

5.2 Median/Average(Standard Deviation) precision computed as in Eq.
4 to evaluate worker answers for different measure estimate types. . 107

5.3 Median/Average (Standard Deviation) task time for different mea-
sure estimate types. 109

xvi

ABSTRACT

Collecting high quality annotations plays a crucial role in supporting machine learn-

ing algorithms, and thus, the creation of intelligent systems. Over the past decade,

crowdsourcing has become a widely adopted means of manually creating annotations

for various intelligent tasks, spanning from object boundary detection in images to

sentiment understanding in text. This thesis presents new crowdsourcing workflows

and answer aggregation algorithms that can effectively and efficiently improve col-

lective annotation quality from crowd workers. While conventional microtask crowd-

sourcing approaches generally focus on improving annotation quality by promoting

consensus among workers, this thesis proposes a novel concept of a diversity-driven

approach. We show that leveraging diversity in workers’ responses is effective in im-

proving the accuracy of aggregate annotations because it compensates for biases or

uncertainty caused by the system, tool, or the data. We then present techniques that

elicit the diversity in workers’ responses. These techniques are orthogonal to other

quality control methods, such as filtering, training or incentives, which means they

can be used in combination with existing methods. The crowd-powered intelligent

systems presented in this thesis are evaluated through visual perception tasks in or-

der to demonstrate the effectiveness of our proposed approach. The advantage of our

approach is an improvement in collective quality even in settings where worker skill

may vary widely, potentially lowering barriers to entry for novice workers and making

it easier for requesters to find workers who can make productive contributions. This

thesis demonstrates that crowd workers’ input diversity can be a useful property,

yielding better aggregate performance than homogeneous input.

Thesis statement: By eliciting and leveraging the diversity of crowd workers’

responses, it is possible to systematically reconstruct higher quality annotations.

xvii

CHAPTER I

Introduction

Intelligent systems powered by crowdsourced human computation that is, systems

that harness human intelligence as part of an algorithmic process via an open call can

perform difficult cognitive and/or creative tasks that cannot easily be done by either

computers or people alone (Kittur et al., 2013; Quinn and Bederson, 2011; Gordon

et al., 2015; Lasecki et al., 2012; Bigham et al., 2010). Crowdsourcing platforms, such

as Amazon Mechanical Turk, have made access to, typically quasi-anonymous (Lease

et al., 2013; Gray and Suri , 2019), crowds of workers quicker and easier than ever

before, allowing researchers and developers to easily post tasks (Bell et al., 2013;

Bernstein et al., 2010; Lasecki et al., 2012) that require human computation. However,

the quality of crowd responses depends on multifaceted factors, such as workers’

experience, interests, attention, and skill level, as well as a task’s workflow, interface

design, incentive mechanisms, and platform quality (Lasecki et al., 2014b; Kim et al.,

2018). In this thesis, we explore how our novel strategies in leveraging diversity-driven

approaches can improve the collective quality of crowd responses even in settings

where the worker skill varies widely.

While the benefit of leveraging diverse people in workplaces, communities, and

societies has long been of interest for both researchers and practitioners (Surowiecki ,

2005; Page, 2008; Yu et al., 2016), how to design tasks to systematically elicit and

1

leverage input diversity to improve the quality of aggregated task performance has

been under-explored. In this thesis, we define input diversity as follows and explore

how to design crowd-powered intelligent systems with input diversity in mind:

Input Diversity: The extent to which the error distributions differ within a set

of responses to a system.

This research explores three hybrid intelligence crowd-machine approaches (Lasecki ,

2019; Song et al., 2018, 2019a,b, 2020) that elicit and leverage diverse responses from

crowd workers in a way to improve the accuracy of reconstructed annotations. The

idea of designing crowdsourcing tasks by eliciting and leveraging input diversity to

improve aggregate answer quality is different from prior microtask crowdsourcing ap-

proaches which were focused on reducing the diversity of the crowd’s responses to

find a single, most agreed upon answer.

One of the advantages of this paradigm is that the approaches can improve re-

sponse quality regardless of workers’ skill level, which benefits work access by lowering

barriers to entry for novice workers. Moreover, the approaches are complementary to

other quality control methods, such as filtering, training, or incentives, and may be

used together to improve performance even further.

In this thesis, we describe three approaches that demonstrate the effectiveness of

the proposed crowdsourcing paradigm which improves answer quality through lever-

aging input diversity (Figure 4.1). In Chapter III, we first introduce an approach

that leverages multiple different tools for the same task, which enables the induced

diverse answers from crowd workers to mitigate systematic error biases (Song et al.,

2019a, 2018). This strategy not only proposes a method to overcome accumulated

systematic error biases, but also introduces a novel concept of tool decomposition,

which fills in the gap where traditional task decomposition approaches leave off: cases

where the task can no longer be divided into smaller subtasks to improve aggregate

2

Figure 1.1: In this thesis, we introduce three different approaches to demonstrate the
effectiveness and efficiency of leveraging input diversity in crowdsourcing
tasks to power intelligent systems. The cylinders represent the target to
be annotated, the funnels represent the tool or interface, and the geomet-
rical figures represent the output responses. We show that systematically
eliciting and leveraging diverse responses from the crowd workers can im-
prove the accuracy of reconstructed annotations.

worker performance. In Chapter IV, we introduce an approach that aggregates crowd

workers’ annotations from multiple different perspective (video frames) of the same

target object as a means to overcome erroneous or even missing annotations (Song

et al., 2019b). As a result, the system output improves the accuracy of 3D state

estimation of objects in videos. We show that diverse annotations can complement

the aggregation and reconstruction quality if the relationships between the annota-

tions are identified, e.g., the temporal dependency between annotations. Lastly, in

Chapter V, we introduce an approach that leverages knowledge diversity of crowd

workers as a means to enable people with diverse knowledge, skills, and perspectives

to contribute to a task regardless of their level of expertise (Song et al., 2020). We

propose a method to transform approximate crowd answers into soft constraints for

3

the system, narrowing down the search region in a solution space to increase the

chance of finding a better solution even with the collection of only rough estimates.

1.1 Research Questions

To explore the thesis of this dissertation, we address three research questions.

• Research Question 1: How can we leverage tool diversity in annotation tasks

so that the aggregated answer is more accurate than any individual tool alone

would have been?

• Research Question 2: How can we leverage perspective diversity so that the lack

of information from one instance can be supplemented by information from other

related instances?

• Research Question 3: How can we leverage knowledge diversity of crowd workers

so that each worker can contribute according to their capability and knowledge

relevant to the task?

1.2 Dissertation Outline and Contributions

Chapter II begins by covering major research challenges addressed by the prior

work in this space, primarily focusing on research in aggregation and reconstruction

of crowdsourced microtasks.

The main part of the thesis introduces three crowdsourcing approaches that lever-

age input diversity of the crowd to generate more accurate reconstruction of an-

notations. These chapters span tool design, technical solutions, data analysis, and

performance evaluation of crowd-machine hybrid tools.

In the remaining chapters, this dissertation will make the following contributions:

4

• Research Question 1: Chapter III introduces the concept of tool decomposi-

tion to augment the standard crowdsourcing practice of task decomposition.

The effectiveness of the concept is demonstrated with a crowd-powered image

segmentation task (Song et al., 2018, 2019a).

• Research Question 2: Chapter IV introduces an approach to leveraging temporal

dependency between video frames to fill in missing information from a single

frame. The effectiveness and efficiency of the approach is demonstrated with a

crowd-powered object 3D state estimation task (Song et al., 2019b).

• Research Question 3: Chapter V introduces an approach to leveraging mul-

tiple granularities of answers from crowd workers to enable crowd workers to

contribute to a task regardless of the specificity of their knowledge. The effec-

tiveness and efficiency of the approach is demonstrated with a crowd-powered

object 3D location estimation task (Song et al., 2020).

By introducing the advantages of diversity-driven approaches in microtask crowd-

sourcing, this dissertation opens a new thread of research that elicits and leverages

diverse answers from the crowd to benefit both requesters and crowd workers in

contributing to a system. We offer a generalizable means of reconstructing high qual-

ity annotations from crowds’ responses, which is demonstrated and evaluated with

crowd-power hybrid intelligence systems solving challenging crowdsourcing problems.

5

CHAPTER II

Background

This dissertation builds upon four main areas of research: (i) designing crowd-

sourcing workflows to improve the collaborative performance of crowds and machines;

(ii) quality control in crowdsourcing to improve the quality of output data; (iii) elic-

iting diverse responses from the crowd; and (iv) crowdsourcing visual annotations to

enable building intelligent crowd-powered systems that can process complex visual

information. This chapter reviews literature in these three domains.

2.1 Crowdsourcing Workflows

In crowdsourcing, breaking large tasks into smaller microtasks has been a popular

strategy to increase the accuracy of crowd workers’ answers. Microtasks are small,

context-free units of work that are widely used in crowdsourcing workflows. Crowd-

sourcing platforms, such as Amazon Mechanical Turk, post these small units of work

that (typically quasi-anonymous (Lease et al., 2013)) crowd workers can accept and

complete. TurKit (Little et al., 2010) introduced the crash-and-rerun programming

model to recursively improve output of a challenging task by passing the task from

worker to worker. Soylent (Bernstein et al., 2010) showed that dividing a larger

task into Find-Fix-Verify steps improves the accuracy of crowd workers’ answers in

document editing tasks. Similarly, ToolScape (Kim et al., 2014) used a Find-Verify-

6

Expand workflow to enhance the process of extracting different steps in how-to videos.

ConceptScape (Liu et al., 2018) extends multi-stage workflows and divides the con-

cept map generation task into three stages with multiple substeps within each stage.

CrowdForge (Kittur et al., 2011) introduced a MapReduce-like workflow to accom-

plish even complex and interdependent tasks using microtasks. Crowdlines (Luther

et al., 2015) introduced two different workflows for merging information from mul-

tiple sources to create an outline. Turkomatic (Kulkarni et al., 2012) attempted to

crowdsource the workflow itself, showing that the planning and execution of a task

can be done given some level of requester supervision.

While this prior research has explored how to use crowd workflows to collectively

accomplish what no single worker could alone, each task type was done using the same

UI, and thus was subject to systematic error biases in each tool. More recently, con-

tinuous crowdsourcing has made real-time (Lasecki et al., 2011, 2012; Salisbury et al.,

2015a,b) or even instantaneous (Lundgard et al., 2018) crowdsourcing responses from

crowds possible. These allow for the creation of interactive systems powered by human

contributors (Lasecki et al., 2014b). TimeWarp (Lasecki et al., 2013a) introduced the

idea of creating workflows that enable a group of workers to complete tasks in a man-

ner that was not possible with a single worker. In the work, crowd workers were able

to provide captions in real time while listening to half-speed audio to improve aggre-

gate performance even though it is a challenging task for individuals. Plexiglass (Rao

et al., 2018) introduced a workflow that enables a single worker to interleave multiple

tasks at a time. The idea is to multiplex “passive” and “active” tasks together in one

UI to more efficiently complete work that would otherwise contain time spent idly

waiting for a rare event to occur. CrowdMask (Kaur et al., 2017) uses a pyramid

workflow to mask private content in images using crowds. Their method segments

and distributes the segments of user content so that workers can mark potentially

private content without viewing enough of it to be harmful. WearMail (Swaminathan

7

et al., 2017) introduced a privacy-preserving workflow that allowed crowds to train

a system on demand to algorithmically direct to an email search task without ever

revealing the email contents to workers.

This thesis contributes to this line of research by introducing a novel approach

that aggregates multiple crowd-powered tools to offer better performance than any of

the constituent tools alone (Chapter III). AgentHunt (Lin et al., 2012a) had a similar

motivation when using multiple workflows to outperform a single best workflow, but

their approach used decision-making models to choose among different workflows.

2.2 Quality Control in Crowdsourcing

Quality control is a challenging problem in crowdsourcing due to the fact that

a crowd is typically composed of people with unknown and diverse skills, abilities,

technological resources, and levels of understanding of the given task. There are

two primary classes of methods for improving the quality of crowdsourced annota-

tions: methods for post-hoc compensation for low quality work at the time of ag-

gregation, and methods for preventing low quality work at the time of annotation

collection (Kittur et al., 2013; Rzeszotarski and Kittur , 2011). Post-hoc compensa-

tion for low quality work, such as majority voting on the result or weighting workers

based on expectation maximization (Dawid and Skene, 1979; Ipeirotis et al., 2010),

is done after results have been submitted, usually in the aggregation stage. Powerful

post-hoc techniques can complement poor quality results in crowdsourced datasets

by leveraging the agreement between multiple workers. However, because answers

exist in a large continuous space, agreement may not be possible in generative tasks.

In this thesis, we introduce novel answer aggregation techniques, which leverage the

shared relationship between the tasks or the data instances to combine heterogeneous

annotations. The aggregation leads to improved annotation accuracy compared to

aggregating a homogeneous set of input from the crowd.

8

2.2.1 Answer Aggregation in Crowdsourcing

A common strategy to improve output quality in crowdsourcing systems is to

aggregate independent workers’ answers on the same task into a single response, typ-

ically via a consensus method like voting. Even simple majority voting has been

shown to produce accurate results for crowdsourcing tasks, such as linguistic annota-

tion tasks (Snow et al., 2008) and document editing tasks (Bernstein et al., 2010). In

terms of image segmentation tasks, ground truth segmentations of objects have been

generated via majority pixel voting with manually collected answers from multiple

crowd workers or experts (Gurari et al., 2016; Lin et al., 2014). More sophisticated

approaches using unsupervised learning have been used to weight workers’ answers by

using models of their abilities (Bragg et al., 2013; Lin et al., 2012b; Welinder et al.,

2010; Whitehill et al., 2009). Deluge (Bragg et al., 2013) models workers’ sensitiv-

ity and specificity to detect noisy workers, and LazySusan (Lin et al., 2012b) tracks

workers by assigning different weights based on the accuracy of a worker’s answers.

Researchers have also proposed probabilistic approaches to model not only the work-

ers, but also the properties of the data being labeled (Welinder et al., 2010; Whitehill

et al., 2009).

2.2.2 Pre-Filtering Answers in Crowdsourcing

Another strategy to improve the quality of aggregated answers is to prevent low

quality work before it is submitted, e.g., training workers (Gadiraju et al., 2015),

screening workers (Kamar et al., 2012), or applying different incentive strategies (Mao

et al., 2013). Recently, skip-based annotation techniques (Chang et al., 2017; Shah and

Zhou, 2015) have been explored in the labeling domain, which allow crowd workers

to self-filter their labels based on their confidence about a question. Revolt (Chang

et al., 2017) introduced a collaborative crowdsourcing system that post-processes self-

filtered questions and asks workers to discuss with each other the question to reach

9

a consensus. Shah and Zhou (Shah and Zhou, 2015) showed that incentivizing crowd

workers to self-filter is the only incentive-compatible payment means possible.

2.2.3 Bias Correction in Crowdsourcing

Assigning differential weights to workers’ answers during aggregation is a prepro-

cessing step that aims to correct individual worker errors before combining the an-

swers (Rzeszotarski and Kittur , 2011). Ipeirotis et al. (Ipeirotis et al., 2010) showed

that the EM algorithm can be used to separate biases from unrecoverable errors, pro-

viding more reliable scores of the quality of the workers. The EM algorithm (Dawid

and Skene, 1979; Ipeirotis et al., 2010) predicts unknown (latent) correct answers by

estimating weights for each crowd worker’s answers. Dawid and Skene (Dawid and

Skene, 1979) showed that the EM algorithm significantly outperforms majority vot-

ing when a majority of workers’ responses are correct and conditionally independent

given the ground truth answer. The EM algorithm is suitable for exploiting tool di-

versity in image segmentation tasks because: i) the majority of the pixels selected by

any tool are assumed to be correct and ii) the probability of tools labeling a pixel is

independent of any particular chosen pixel. When designing a tool, its exact abilities

and error biases are not typically known in advance because designers are not unaware

of the input images that the system will see in final use. Because the performance

of each tool can vary with images or object types, we can consider a tool’s ability

as the latent variable to be predicted. Therefore, we apply the EM algorithm across

different tools with the goal of maximizing the performance of the aggregated output.

Several approaches have been introduced to combat biases of individual crowd

workers, but there has been little work on correcting error biases induced by tools or

interfaces. For example, (Lasecki and Bigham, 2012) and (Kaspar et al., 2018) can be

potentially used to correct systematic biases induced by workers, but require human

mediators to correct biased answers.

10

2.3 Diverse Responses from the Crowd

Crowdsourcing serves as a powerful method in obtaining human-labeled datasets

that leverages the “wisdom of crowds” (Surowiecki , 2005). The idea is that the

average among diverse different responses tend to be close to the expected solution.

While this conventional perspective regards the diversity in crowd responses more or

less as noisy signal, recent studies started to look at this as a property to be leveraged.

In paraphrasing tasks, diverse responses are encouraged because novel paraphrases

are expected, which can be elicited from priming the annotators with different ex-

ample paraphrases (Jiang et al., 2017). Similarly, in text summarization tasks, in-

ducing crowd workers to create diverse different aspect-based summarization gave

more accurate results than asking them to extract all key elements (Jiang et al.,

2018). In entity annotation tasks, it is shown that identifying diverse but valid crowd

worker interpretation can improve the interpretability of the dataset (Kairam and

Heer , 2016). Recent work has shown that crowd workers’ diverse perspectives can

be effectively leveraged in an emotion annotation task, such that response diversity

enables the efficient construction of a large collective answer distribution (Chung

et al., 2019a). Another effective diversity elicitation approach has been demonstrated

in crowd-powered GUI testing, where the diverse navigation paths increase the test

coverage (Chen et al., 2020).

Other work systematically elicits diverse responses from the crowd to obtain a sin-

gle aggregated artifact. For example, the idea of decomposing tools for the same task

to elicit different tool diversity has been studied in image segmentation tasks (Song

et al., 2018, 2019a). A similar idea of dynamically switching workflows for the same

task has been demonstrated to be effective in generating diverse but valid data for

NLP training (Lin et al., 2012c). While these works focused on leveraging diverse

responses to reduce error biases induced by the tools or the systems, there are other

works that leverage diverse responses to compensate the uncertainty of data with rich

11

information (Song et al., 2019b; Chung et al., 2019a).

The common thread behind these research efforts is that they leverage diverse

responses to increase the collective information, which can reduce aggregate noise or

compensate biases when combined appropriately. This thesis contributes to this line

of work, while we introduce novel strategies in designing crowdsourcing tasks with

diversity in mind.

2.4 Crowdsourcing Visual Annotations

In this thesis, we evaluate our proposed approaches on visual perception tasks

in order to demonstrate the effectiveness and efficiency of the proposed approaches.

Therefore, in this section, we provide a brief background on crowdsourcing visual

annotations on images and videos.

Despite the great progress in computer vision on problems such as object category

detection and object 2D bounding box detection, many tasks still remain challenging

including estimating the 3D properties of objects from a single RGB image (Hoiem

et al., 2005; Saxena et al., 2007; Eigen and Fergus , 2014; Tulsiani et al., 2017). This

thesis demonstrates the effectiveness of the proposed diversity-driven approach using

challenging image and video annotation tasks.

2.4.1 Crowdsourcing Image Annotations

Crowdsourcing techniques are widely used in visual data annotation in the 2D

image-space, such as object segmentation (Bell et al., 2013; Lin et al., 2014; Song

et al., 2018; Vernier et al., 2019), object detection (Hara et al., 2014; Sorokin et al.,

2010), and visual question answering (Bigham et al., 2010; Krishna et al., 2017).

There are many emerging web-based tools designed to assist crowd workers in image

annotation tasks to make use of their efficiency and flexibility. Much of the recent

success in automated computer vision has been driven by novel large-scale datasets,

12

and by powerful neural network models that can learn from this data. The large

datasets (Deng et al., 2009; Lin et al., 2014; Bell et al., 2013; Bigham et al., 2010)

are made possible by the emergence of crowdsourcing platforms, such as Amazon

Mechanical Turk, which allows to recruit crowd workers to perform image annotations.

Rapid crowdsourcing of image annotations can also enable in-home robots to interact

with never-before-seen objects on a daily basis (Gouravajhala et al., 2018).

2.4.2 Crowdsourcing Video Annotations

The techniques used for static image annotation do not optimally extend to video

annotation, as they neglect dependencies in the temporal dimension. This imposes

significant additional cost on the task and prevents scaling. Our work focuses on

decreasing the cost of collecting annotations by increasing the aggregation efficiency.

Video annotation systems for some tasks (e.g., activity summarization (Lasecki

et al., 2013b) or event summarization (Yuen et al., 2009)) provide a video stream to

crowd workers and ask them to provide a summary of the clip based on the query

from a requester. Other systems are designed to detect targeted events from a video

stream (Bernstein et al., 2011; Kim et al., 2014; Lasecki et al., 2014a; Park et al.,

2012), letting crowd workers refer to the temporal context to decide the specific

moment of the targeted events. Some systems are built for more confined local

annotation tasks, such as moving object detection (Di Salvo et al., 2013), object

tracking (Vondrick et al., 2013), object annotation (Yuen et al., 2009), or object seg-

mentation (Kaspar et al., 2018). Our work in Chapter IV contributes to this line

of research by introducing a novel method to aggregate confined local annotations

across video frames to improve the output quality of subsequent video processing

steps. More specifically, we introduce a system that estimates the 3D state—position

and orientation—of objects (Su et al., 2015; Szeto and Corso, 2017) using novel col-

lection and aggregation strategies.

13

CHAPTER III

Tool Diversity as a Means of Improving Aggregate

Crowd Performance

3.1 Motivation

Crowdsourcing is a common means of collecting image segmentation training data

for use in a variety of computer vision applications. However, designing accurate

crowd-powered image segmentation systems is challenging because defining object

boundaries in an image requires significant fine motor skills and hand-eye coordi-

nation, which makes these tasks error-prone. Typically, special segmentation tools

are created and then answers from multiple workers are aggregated to generate more

accurate results.

While perceiving the boundaries of physical objects comes naturally for people,

it remains a challenging open problem for CV systems due to the complexity of

understanding the semantics of visual scenes (He et al., 2017; Long et al., 2015).

Crowd-powered object segmentation tools can bridge this gap by leveraging human

understanding to produce large, manually-demarcated training data sets (e.g., (Bell

et al., 2013; Gurari et al., 2016; Lin et al., 2014; Vijayanarasimhan and Grauman,

2014)) for CV systems. However, designing crowd-powered tools that produce high-

accuracy training data and scale efficiently (with respect to human-time cost) remains

14

(a) Conventionally, one tool type is used for
the same task.

(b) We propose leveraging different tools for
the same task.

Figure 3.1: This chapter introduces an approach to leveraging tool diversity that uses
multiple different tools for the same task (as in (b)) to improve aggregate
crowd performance by offsetting systematic error biases that might oth-
erwise result from using any one tool type alone (as in (a)). Our findings
on an image segmentation task demonstrate that using a combination of
tools can significantly increase aggregate accuracy.

an open problem because the task of manually marking object boundaries requires

significant hand-eye coordination and fine motor skills, resulting in a high error rate

if these tasks are performed too quickly by workers.

Many web-based image segmentation tools (e.g., (Bearman et al., 2016; Bell et al.,

2013; Carlier et al., 2014; Gouravajhala et al., 2017; Lin et al., 2016; Russell et al.,

2008)) have been designed to help workers reduce the effort needed to complete a

task and to increase the accuracy of their output. However, different tool designs

induce different error patterns in worker performance, which can lead to repeated

systematic mistakes when only a single tool is used. For example, some tools (Bell

et al., 2013; Russell et al., 2008) provide polygon drawing functionality to help trace

object boundaries, but Bell et al. (Bell et al., 2013) reported that workers often skip

selecting parts of the object if automatic scrolling during selection is not provided.

We consider this to be a systematic error bias because the same error pattern would

be unlikely to emerge if the tool were designed differently. In other words, it would be

unlikely for worker outputs from Click’n’Cut (Carlier et al., 2014) (which asks workers

to use left/right mouse clicks to identify foreground and background regions of an

15

image) to result in the same mistakes as using the polygon drawing tool. However,

Click’n’Cut may exhibit its own systematic error pattern induced by limitations in

its own design. More generally, we consider error patterns that are found to be

common among worker outputs from a single tool to be systematic error biases,

as they are likely to be induced by the design of the tool itself. These errors are

different from, for example, human perceptual biases that may also systematically

affect outcomes (Meissner and Brigham, 2001), in that they are common to the

outputs of a tool, not common to the annotations produced by an individual worker.

In this chapter, we propose the idea of leveraging tool diversity as a means of

overcoming these systematic error biases to improve aggregate crowd performance.

Tool diversity is the extent to which tools designed for the same task differ from one

another in the systematic error biases that they induce. Unlike standard aggregation

methods in crowdsourcing, which try to design and use the best single tool available

with many workers in order to reach high accuracy, we show that using multiple ef-

fective tools can diversify the error patterns in worker responses, and help systems

achieve a higher combined accuracy (Figure 3.1). This insight is motivated by en-

semble learning methods in machine learning that use multiple learning algorithms to

obtain better prediction than can be obtained from any of the constituent algorithms

alone (Dietterich et al., 2000). A strength of leveraging tool diversity is that the

approach is orthogonal to, and thus may be combined with, many existing crowd-

sourcing methods for improving quality over time (e.g., training workers (Dow et al.,

2012; Williams et al., 2016) or identifying high-performing contributors (Rzeszotarski

and Kittur , 2011)). We also note that a similar concept was introduced in the TISM

method Griffin and Corso (2019) where multiple different computer-generated anno-

tations on the same object in the same image are automatically combined to produce

consistent improvement in performance.

To demonstrate our proposed workflow, we design four different image segmen-

16

tation tools and introduce FourEyes, a multi-tool based crowd-powered system that

leverages combinations of tools to generate better aggregate responses. After that, we

report results from a series of studies that evaluate different aggregation conditions—

such as majority voting versus expectation maximization (EM), and single-tool ag-

gregation versus up to four-tool combination aggregation—with equally-sized groups

of workers. Our evaluation demonstrates the effectiveness of tool diversity by show-

ing that the output accuracy of heterogeneous tool combinations can be significantly

higher than that of homogeneous sets, providing output at least comparable to the

best constituent tool, and always yielding significantly better results than the weakest

constituent tool.

Moreover, we explore the idea of adding post processing for multi-tool aggregation

with respect to the error correction mechanism. When leveraging tool diversity, once

the analysis on individual tool performance is conducted and the error pattern of each

tool is revealed, a system designer can implement suitable correction mechanisms to

further offset error biases To correct for errors in image segmentation tasks, we in-

troduce a new region-based method for synthesizing more accurate bounds through

averaging surrounding annotations. We explore the effects of mask size and thresh-

old parameter, and show that the proposed method always increases the aggregate

accuracy of any tool combination by up to 6%. We also investigate the effect of a

threshold parameter in the EM method, and show that the threshold parameter value

which yields the best performance differs by tool combination types.

Finally, we discuss generalizable guidelines for applying the multi-tool approach

in other problem domains. We characterize our problem in a more general form and

summarize the properties of crowdsourcing tasks that are amenable to our approach:

those that are objective, tractable enough for workers to produce nearly-correct re-

sponses, and increase in correctness as additional answers are provided, can benefit

from our approach.

17

This chapter presents an extended version of work published at the 2018 ACM

International Conference on Intelligent User Interfaces (Song et al., 2018) that first

introduced the idea of leveraging tool diversity during aggregation as a crowdsourcing

technique. In addition to a more in-depth evaluation of tool combinations (aggrega-

tion of three- and four-tool combinations), this chapter introduces a novel region-

based error correction method and explores the impact of parameter selection on the

region-based and EM methods as a means of pre-processing for multi-tool aggregation.

The key contributions of this chapter are:

• A novel crowdsourcing paradigm that leverages a system’s or task’s tool diver-

sity in order to aggregate input across different types of tools to improve the

combined accuracy of workers’ answers by offsetting systematic error biases.

• FourEyes, a crowd-powered image segmentation system that implements our

approach, combining the output of four different tool types to improve the

collective accuracy of a group of workers using a single segmentation tool.

• Experimental results from 51 objects across 12 indoor scenes segmented by 288

crowd workers using four different tools that validate our system’s effectiveness

and suggest the benefits of our multi-tool approach.

• An evaluation of the aggregate results of each possible tool combination from

FourEyes, and an exploration of the ability for correction mechanisms to fur-

ther improve the accuracy of the combined results by exploiting the error bias

patterns of the individual tools.

3.2 Approach

Conventional approaches to improving crowd worker output accuracy include mi-

crotask decomposition and consensus-based aggregation. These approaches are usu-

18

ally intended to reduce task complexity and correct for the variance in individual

worker responses, respectively. However, when it comes to systematic error biases in-

duced by a tool’s design, errors can persist even after decomposition or aggregation,

introducing biases into worker responses. Our tool diversity strategy builds on prior

work in crowdsourcing workflows and answer aggregation strategies to reduce these

systematic error biases.

Prior work has used task decomposition the process of breaking down larger tasks

into more manageable, focused pieces of work to make tasks more approachable for

non-expert crowd workers. Once task decomposition has been used to break down

a larger unit of work as much as possible within a corresponding workflow, most

crowdsourcing systems then recruit multiple workers in parallel to further improve

accuracy by aggregating their answers. We propose using multiple different tools

across different workers to complete the same [sub]task, instead of having all workers

complete the same task with the same interface or tool. Our proposed approach fills

in the gap where traditional task decomposition leaves off.

3.2.1 Motivation from Ensemble Learning

Our work is conceptually motivated by ensemble learning in machine learning.

Ensemble learning methods are machine learning algorithms that construct a set

of learning algorithms and predict a new data point by taking a weighted vote of

the predictions from each learning algorithm (Dietterich et al., 2000; Freund and

Schapire, 1995). It has been proven that ensembles often perform better than any

single member (Dietterich et al., 2000). Algorithm accuracy (i.e., better than random

guessing) and diversity are necessary and sufficient conditions for a combination of

algorithms to be more accurate than any of its individual constituents (Hansen and

Salamon, 1990). The left diagram in Figure 3.2 shows how ensemble methods work.

In the diagram, a learning algorithm can be viewed as searching a space of hypotheses

19

Figure 3.2: The left diagram shows the hypotheses space of the possible segmentation
tools, including the best performing tool (f) and other possible hypothe-
ses (h1 . . . h4). We are motivated by ensemble learning methods that
construct a combination of alternative hypothesis (h1 and h2) to approx-
imate the best hypothesis f . The right flowchart shows a set of workers
using two different tools to perform the same task. An aggregation and
correction pipeline can output reliable (consistent) and valid (accurate)
aggregate results (f) from two reliable but not valid answers (h1 and
h2). This diagram represents the end-to-end process of the proposed tool
diversity scheme: preparing different tools, aggregating, and correcting.

to identify the best performing hypothesis f , which can be computationally difficult

to find. Ensemble learning constructs a combination of two alternative hypotheses

h1 and h2 with proper weights (w1 and w2), and approximates the best hypothesis f

by averaging the two. Our tool diversity approach is analogous to ensemble learning

methods in that multiple image segmentation tools are combined to produce a better

final result.

3.2.2 Aggregation of Reliable but Biased Tools

Even a carefully designed crowdsourcing system may often induce reliable (consis-

tent) but not valid (accurate) answers. For example, a semantic image classification

task of assigning classes that correspond to objects that appear in an image can

have its systematic bias due to the design of the tool. If a tool is designed to type

free-form answers, it may bias workers to only use a limited number of words that

20

they can spell or find easier to spell. On the other hand, if a tool is designed such

that workers can click to select a word from a predefined list, the error pattern would

be different. These errors can be defined as systematic error biases because the same

error pattern would be unlikely to arise if the tools were designed differently.

Instead of trying to fix the bias of a specific tool, our approach aims to combine

answers from these multiple biased tools to improve the aggregate result. Analogous

to a necessary and sufficient condition in the ensemble learning scheme, a suggested

condition for using multiple tools is that the tools are at least reliable, even if they are

not valid. This allows for aggregation and correction mechanisms that can offset the

expected biases, eventually achieving both reliable and valid results when aggregated.

Figure 3.2 depicts the concept of tool aggregation within a crowdsourcing workflow.

A researcher or requester can provide Tool 1 to one set of workers, and Tool 2 to a

different set of workers. When the tools are reliable but not valid with output hy-

potheses h1 and h2, respectively, the aggregation and correction modules can combine

the answers so that the final output is approximately f , the best hypothesis. In the

next sections, we show how we realized these tools and designed aggregation and the

correction mechanisms in the domain of semantic image segmentation.

3.3 FourEyes

FourEyes is an image segmentation system that leverages four different crowd-

powered tools to produce accurate segmentation results by aggregating answers across

different tool types. We describe the individual tool here, and then detail the novel

aggregation methods in the next sections.

3.3.1 Choosing the Tools

We introduce four web-based segmentation tools that we designed to instantiate

and test the tool diversity concept. We considered one key question when designing

21

the tools: “How can we diversify the errors produced by different tools?” Because

it is hard to predict what errors will be induced by a given tool, we built tools

specialized to work well with objects with different characteristics, such as small

or transparent objects, objects with fuzzy materials, and reflective surfaces. These

objects are current challenges to both automatic segmentation methods and human

annotators. We designed these tools to ideally perform differently for different types

of objects, resulting in greater error diversity. We categorized these object into three

groups and created tools that are designed to minimize errors in each object category.

The spaces we explored and the tools we designed are summarized in Figure 3.3. We

used the Question (Q), Option (O), and Criteria (C) representation (MacLean et al.,

1991) of the design space for deciding which tools to build. The Question indicates

a key design issue, the Option node suggests possible answers to the Question, and

the Criteria item represents the core properties expected from choosing an Option.

For one of the Options (O3 in Figure 3.3), we differed the interface in two ways

(Drag-and-Drop and Pin-Placing) so that the interaction of users can create different

artifacts. We observed that different interactions lead to different error patterns, so

we include both of the tools in the experiment section. In the following section, we

provide detailed descriptions of the four tools developed.

3.3.2 Designing the Tools

The four tools implemented were Basic Trace, Drag-and-Drop, Pin-Placing, and

Floodfill. They vary in the level of degree of freedom, interface layout, and amount

of interaction needed from a worker. The differences are summarized in Table 3.1.

Basic Trace

The first tool is a free-form drawing tool shown in Figure 3.4(a). With Basic

Trace, workers click and drag their mouse to trace the outline of the query object in a

22

Figure 3.3: Design space we considered when choosing the tools for the study. We
used the Question (Q), Option (O), and Criteria (C) representation of
the design space.

Design Element Comparison

Degree of freedom &
Amount of interaction

Basic Trace > Pin-Placing > Drag-and-Drop > Floodfill

Complexity of
interface layout

Pin-Placing > Drag-and-Drop > Floodfill > Basic Trace

Table 3.1: A comparison of the four tools across two design elements.

scene (Figure 3.4(a) 3). Once a worker submits the initial trace line, a simple image

processing algorithm connects the gaps and fixes the irregularities in the traced line

in order to form a smooth shape. It then highlights the pixels inside the traced shape,

and returns the result as the final object segmentation. Of our four tools, the Basic

Trace is the most manual and provides the highest degree of control. The strength

of this tool is that it is highly flexible and workers can segment any type of objects if

sufficient time is given. However, the weakness of the tool is that if a worker is idle

and not careful enough, the output can easily be very poor, e.g., a worker may draw

a rough box around an object instead of carefully following the boundary.

23

(a) Overview of the Basic Trace image segmen-
tation tool. (1) shows the full instructions when
clicked. (2) describes the query object which
is shown to the workers in random order. (3)
shows an example of a trace line a worker pro-
vided. (4) shows the segmentation result when
clicked. (5) is the task timer, which serves as
an encouragement to workers to consider time
in their work.

(b) Overview of the Drag-and-Drop image seg-
mentation tool. (1) shows the template images
list. (2) shows an example of the chosen tem-
plate image being aligned to the query object.

(c) Overview of the Pin-Placing image segmen-
tation tool. (1) shows the template images list.
(2) and (3) show examples of chosen points by
a worker. (4) lets workers reset the points to
start over.

(d) Overview of the Floodfill image segmenta-
tion tool. (1) shows that a worker can click on
a query object in the given scene to initiate seg-
mentation. (2) is a slider that allows workers to
adjust a parameter to control the propagation
of the selection area.

Figure 3.4: Worker interface of the four segmentation tools used in our experiments.

24

Drag-and-Drop

The second tool lets workers select an object template from a list (Figure 3.4(b)

1), which is generated by searching images of a target object from an image search

engine like Google or Bing. These images are then filtered for transparency and

size, and the top N (in this chapter we use N = 12) are downloaded to construct a

template list for each query object. Workers are asked to select the template that

most accurately matches that object in the scene based on its shape, proportion

of dimensions, and perspective. In Drag-and-Drop, workers overlay their selected

template onto the object identified in the scene (Figure 3.4(b) 2). Workers are

able to scale, rotate, and drag the template to adjust the angle its dimensions in an

attempt to closely match the shape of the actual object. Based on the transformation

of the template, the system determines the final object segmentation by identifying

the overlapping pixels between the template and the scene. The strength of this tool

is that it is very intuitive to use. However, the weakness of the tool is that it is hard

to map deformable objects, or rigid objects if being viewed from different angle.

Pin-Placing

The third tool is also a template-based tool called Pin-Placing. A template list

is generated in the same manner as in Drag-and-Drop (Figure 3.4(c) 1). With

this tool, workers select four arbitrary points on their selected object template (Fig-

ure 3.4(c) 2), and pair them with four corresponding points on the object in the

scene (Figure 3.4(c) 3). Workers can modify individual points, or clear all points at

once (Figure 3.4(c) 4). After the four pairs of points are submitted, an automatic

transformation algorithm is run to transform the template image to produce the final

object segmentation. Note that four pairs of control points are the minimum neces-

sary to perform a non-linear deformation between two images, given the perspective

limitation inherent in a fixed-angle view in two dimension. Pin-Placing’s working

25

mechanism is similar to sophisticated techniques (e.g., that professional radiologists

use for diagnosing lesions), but it is not intuitive to novice workers.

One drawback of template-based approaches is that if an object in a scene has

an atypical shape, none of the template images in the list may have a shape similar

to the object. In this case, a possible solution would be allowing workers to switch

to a different non-template-based tool. We note that the two template-based tools,

Drag-and-Drop and Pin-Placing, force workers to select occluded parts of a target

object when it overlaps with other objects. This is useful in domains like robotics,

where ground truth object geometry includes hidden parts. However, in this study,

we only consider the visible parts of a target object as the region of interest because

it is a more general way of indicating objects in two-dimensional image segmentation.

As a consequence, these two tools necessarily select more false positive regions than

the other tools.

Floodfill

Floodfill (AKA Bucket-fill) is a mostly autonomous tool, combining a simple region

growing method (Torbert , 2016) with minimal human input to initialize the seed

point and tune a threshold parameter. Workers click on the object they want to

segment (Figure 3.4(d) 1) and adjust a slider to tune one of the algorithm’s threshold

parameters (Figure 3.4(d) 2). This triggers the RGB Floodfill algorithm which

highlights all neighboring pixels sharing an RGB value similar to the seed point that

was clicked. If the result is unsatisfactory, either failing to select the entire object or

exceeding the object boundary, workers can adjust the slider to modify the highlighted

area. The tool is effective if the shape of an object is complex with many curves, but

only when the object is mostly monochromatic. If a query object is polychromatic

or contains shaded regions, the selection area can be smaller than the actual object

boundaries because the algorithm cannot propagate across these regions.

26

3.3.3 System Interfaces

FourEyes begins by receiving a scene image and the user’s request in the form of

a natural language query, e.g., “mark the bowl.” The query is parsed to find nouns

which are then displayed to workers (Figure 3.4(a) 2) as objects that need to be

segmented from the scene. For each tool, a short series of instructions (including the

target object in bold) is displayed to workers while they perform the task. Workers

can also check the segmentation result before they submit their work (“Check the

Result” button in Figure 3.4(a) 4). To discourage workers from idling, a task timer

is embedded (Figure 3.4(a) 5) that counts down from t seconds and turns negative

when time runs out. In this chapter, we used t = 30 in all experimental conditions.

The timer serves as encouragement to complete the task in a timely manner, and

does not otherwise affect the workers.

3.4 Measuring the Performance of Individual Tools

To understand the effect of tool diversity on improving aggregate crowd perfor-

mance, we recruited 288 crowd workers from Mechanical Turk using LegionTools (Gor-

don et al., 2015). Workers were given one of the four tools to perform a task of image

segmentation. Note that we gave different tools to different workers because we con-

sider the smallest unit of work as a microtask in which one worker segments one

object using a single tool. To avoid learning effects and worker-induced bias in the

annotation results, workers were randomly assigned to an annotation task (segment-

ing one scene using one tool), and they could not choose which tool they were given.

We recruited six unique workers for each tool-scene pair, resulting in a total of 1224

object segmentations.

27

3.4.1 Dataset

We chose a dataset that included various indoor objects. The dataset included

12 different visual scenes, each containing three to seven objects, for a total of 51

objects. The scenes were gathered from publicly-available datasets (washington, 2014;

VaFRIC , 2012), and represent typical indoor scenarios with commonplace objects.

They ranged from a living room to a tabletop, and contained everyday objects (e.g.,

a plant, laptop, soda can, cereal box, flashlight, etc.). Each worker was shown one

scene and a series of object names to segment depending on the number of objects

in the scene. For each task, the order of the objects in each list was randomized to

avoid any ordering bias. Each worker was given one scene with one tool to perform

a segmentation task.

3.4.2 Instructions and Payment

Before crowd workers could begin the task, they were shown a short instructional

video demonstrating the goal of the task and how to use the tool they would be

provided with. The lengths of the instructional videos were 36s, 54s, 78s, and 33s,

respectively, for each tool: Basic Trace, Drag-and-Drop, Pin-Placing, and Floodfill.

Two of the tools (Drag-and-Drop and Pin-Placing) had longer videos because they ex-

plained how to choose the most similar template image. This additional step delayed

workers’ task completion time in the actual experiment as well. Workers were also

shown pictures exemplifying desired and undesired segmentations (the same example

images were used for all tools) so that they understand the aim of the task to create

a detailed boundary of a target object in a scene. If the worker decided to proceed

after watching the instructional video, they were directed to FourEyes’s worker UI

and their subsequent interactions with the UI were recorded. Task instructions were

also accessible at any time if necessary (Figure 3.4(a) 1). Each worker was paid

between $0.35 and $0.60 per task, proportional to the number of objects they had to

28

segment and the expected completion time using a given tool (a pay rate of ∼$10/hr).

The expected time of each tool was determined by its average latency time from a

dozen of preliminary experiments.

3.4.3 Segmentation Quality Evaluation

To assess success on the image segmentation task, we measured the accuracy of

each by comparing the output similarity to the ground truth segmentation that was

generated manually by the authors prior to the experiments. One author carefully

completed the task and another author verified the quality of the resulting ground

truth. We used precision, recall, and F1 score (the harmonic mean of precision and re-

call) to compute the pixel-level similarity (Equation 1). To do this, the number of true

positive, false positive, and false negative pixels were counted for each segmentation.

Precision =
true positive

(true positive + false positive)

Recall =
true positive

(true positive + false negative)

F1 Score =
2× Precision× Recall

(Precision + Recall)

(Eq. 1)

3.4.4 Results

The different tools had different error patterns (trade-offs) in terms of precision

and recall. Figure 3.5 shows scatter plots of the overall segmentation result with each

dot representing an average precision-recall of one object being segmented using one

of the tools in FourEyes. That is, each dot is an average of six workers’ segmentation

results. As shown in Figure 3.5 (a) and (b), Basic Trace and Drag-and-Drop tended

29

to show high recall but low precision. We observed that with these two tools, workers

tended to select objects by putting large margins around the objects, resulting in high

recall but low precision. Examples of segmentation using these two tools are shown

in Figure 3.6 (a) and (b), respectively. Meanwhile, Pin-Placing resulted in the most

scattered performance as shown in Figure 3.5 (c). This implies that the performance

of the tool varies a lot depending on object types. We presume that the underlying

mechanism of computing non-linear transformation of Pin-Placing is unfamiliar to

novice workers, which led to scattered and low overall performance. An example of

using Pin-Placing is shown in Figure 3.6 (c). In the example, a worker selected a

template image that is very different from the query object, resulting in both low

precision and low recall. Lastly, Figure 3.5 (d) shows that Floodfill tended to give

high precision but low recall performance. We observed that the selection area with

Floodfill tended to be smaller than the actual object boundaries due to boundaries

that were shaded or colored differently. An example segmentation of using Floodfill

is shown in Figure 3.6 (d). Because one side of the vase was much brighter, the

worker could not select the entire image with the seeded region growing algorithm.

Figure 3.6 shows typical example worker segmentations from each tool, alongside the

ground truth.

In terms of reliability and validity (as discussed in Section 3.2.2), Basic Trace,

Drag-and-Drop, and Floodfill can be considered reliable since their output pattern is

expectable (either high recall or high precision). However, they are not valid because

their output is biased (either low precision or low recall). On the other hand, Pin-

Placing is neither reliable nor valid because the output pattern is not predictable

being highly dependent on the query object.

For each tool, we recruited 72 workers. Each worker performed segmentation

for one scene, where each scene contained three to seven objects. The cumulative

distribution functions of performances (precision, recall, and F1 score) of a single

30

(a) Basic Trace (b) Drag-and-Drop (c) Pin-Placing (d) Floodfill

Figure 3.5: Precision-recall scatter plot of our four different tools. The different tools
have different error patterns (trade-offs) in terms of precision-recall met-
rics. (a) Basic Trace and (b) Drag-and-Drop show high recall but low
precision tendency, implying that the tools are reliable but not valid. (c)
Pin-Placing shows the most scattered pattern, implying that the tool’s
performance highly depends on the query object, which makes the tool
neither reliable nor valid. (d) Floodfill shows high precision but low recall
tendency, implying that the tool is reliable but not valid.

Precision Recall F1 score

Basic Trace 0.62 (0.14) 0.89 (0.12) 0.71 (0.13)
Drag-and-Drop 0.57 (0.14) 0.86 (0.15) 0.66 (0.13)

Pin-Placing 0.53 (0.17) 0.71 (0.17) 0.58 (0.17)
Floodfill 0.84 (0.11) 0.63 (0.25) 0.67 (0.20)

Table 3.2: Average performance (and standard deviation) of the four individual tools.

worker are summarized in Figure 3.7. From the precision plot (left), we can see that

the Floodfill tool has more workers with high scores (> 0.8) compared to the other

tools. From the recall plot (center), we can see that the Basic Trace and Drag-and-

Drop tools have more workers with high scores compared to the other tools. The

F1 score plot suggests that the tool’s harmonic performance is less diverse compared

to precision or recall, due to the offset between the two. Average accuracy metrics

for each tool are summarized in Table 3.2. We use F1 score as our performance

measurement. In general, Floodfill gave the best performance in terms of precision,

and Basic Trace gave the best recall and F1 score.

The average performances of each object are summarized in Figure 3.8. The

hollow dots represent performance for individual objects (average performance of 24

31

Figure 3.6: Original image (top left), ground truth image (bottom left), and exemplar
segmentations using the four tools with their precision and recall values
reported on top. (a) Basic Trace, (b) Drag-and-Drop, (c) Pin-Placing,
and (d) Floodfill. The exemplar images represent a typical output of
each tool.

workers who segmented that object), and the filled dots are average performance

over all objects in a single scene. The performance varied across scenes due to the

different characteristics of each scene. For example, one scene was shot in front of a

window, which added a lot of lighting to the scene, and another scene had many rigid

objects that were relatively easy to demarcate from the background. Regardless of

the characteristics, the average F1 score of scenes lay in between 0.5 to 0.8.

To calculate latency, we measured the overall task time starting from the moment

the worker began interacting with the task to when the worker clicked “submit” at

the end of the task. After dropping outliers more than two standard deviations (2σ)

from the mean latency, Basic Trace’s average latency was 14.37 seconds (σ = 8.08),

Drag-and-Drop’s was 24.89 seconds (σ = 11.25), Pin-Placing’s was 20.77 seconds

(σ = 7.90), and Floodfill’s was 12.62 seconds (σ = 10.41). The template-based tools

had a higher segmentation latency than the other two tools. This was expected

because the template-based tools are more involved and perhaps less intuitive for

general-purpose crowd workers. Using Floodfill, some workers managed to produce a

32

Figure 3.7: Precision (left), recall (center), and F1 score (right) plots of the cumulative
distribution functions of performances of a single worker per tool. In
terms of precision, Floodfill has the most number of workers with high
performance (> 0.8). In terms of recall, Basic Trace has the most number
of workers with high performance. The F1 score performance per worker
is similar between tools compared to precision or recall, because the two
offset each other when combined.

satisfactory segmentation within three seconds, but others spent extra time trying to

perfect their segmentation, with diminishing returns in accuracy.

From these primary results, we observed different error patterns across the four

tools that we designed. The result matches our design intent to diversify the errors

produced by different tools. Now we can think of each tool as alternate hypotheses h1,

h2, h3, and h4 of the optimal hypothesis f , with different error biases b1, b2, b3, and b4,

respectively. As in ensemble learning, we expect that aggregating the different tool

pairs will improve the output accuracy by reducing accumulated systematic error bi-

ases, especially when the combined tools are reliable but not valid with complemented

biases (as portrayed in Figure 3.2).

3.5 Evaluation of Multi-Tool Aggregation Scheme

In order to evaluate the effectiveness of our tool diversity approach, we conducted a

series of studies to examine the performance improvement achieved from an ensemble

33

Figure 3.8: Precision (top), recall (middle), and F1 score (bottom) of average seg-
mentation result of each object and scene. The hollow dots represent
performance for individual objects (average performance of 24 workers
who segmented that object), and the filled dots are average performance
over all objects in a single scene. Different scenes are separated with
dotted vertical lines. The average performance of objects varied across
different scenes, but lied in between 0.5 to 0.8 in terms of the F1 score.

of different tools. In the studies, we compared the performance of every possible tool

aggregation: from single-tool to four-tool aggregations. As a baseline condition, we

first investigate the segmentation quality of single-tool aggregation based on majority

voting of four different workers. We implement a pixel-level majority voting method,

with each answer weighted equally. In the second study, we do the same majority

voting, except on two, three, and four tool combinations aggregating four workers’

answers from different tools. In the last study, we apply the EM method on multi-tool

aggregation to optimize the tools’ weights adaptively per pixel. Our studies show that

the tool diversity approach is a safe design strategy that guarantees performance at

34

least as good as the superior constituent tool.

3.5.1 Method 1.

Single-Tool Aggregation with Majority Voting (Baseline)

Single-tool aggregation combines answers from the four workers who used the same

tool to segment target objects. We randomly picked 15 worker combinations from

the collected data. This was performed to avoid any bias from accidentally choosing

a good or bad combination of workers. For each query object in the scene, pixel-level

majority voting was performed to annotate each pixel as either background or object.

If more than two workers labeled a pixel as belonging to the query object, then the

pixel was included. The accuracy of the final segmentation was computed as in the

Segmentation Quality Evaluation section (Section 3.4.3). The results of 15 randomly

drawn combinations were averaged for all query objects. We summarized the average

results in Table 3.3.

Precision Recall F1 score

Basic Trace 0.61 (0.18) 0.99 (0.06) 0.73 (0.15)
Drag-and-Drop 0.57 (0.15) 0.95 (0.11) 0.70 (0.13)

Pin-Placing 0.57 (0.16) 0.83 (0.16) 0.66 (0.16)
Floodfill 0.85 (0.12) 0.70 (0.23) 0.73 (0.18)

Table 3.3: Average performance (and standard deviation) of majority voting on
single-tool aggregation.

The change in precision was not significant with single-tool aggregation compared

to the average precision without aggregation (see Table 3.2). However, recall and

F1 scores improved. For example, recall of Basic Trace increased by 10% (p < .01)

compared to its average performance without aggregation. The increase in recall is

a natural consequence of answer aggregation with low agreement thresholds. If the

agreement threshold is higher, recall would decrease because more consensus is needed

to annotate a pixel as an ‘object’. In the next sections, we observe if and how further

35

improvements can be achieved with multi-tool aggregation.

3.5.2 Method 2. Multi-Tool Aggregation with Majority Voting

Adding multiple tools for the same task can improve the aggregate accuracy when

the tools compensate for systematic error biases of each other. In this section, we look

at the results of all possible tool combinations aggregated using pixel-level majority

voting. We start by focusing on two-tool aggregate performance and then investigate

three- and four-tool performance.

Two-Tool Aggregation

There are six possible two-tool aggregations for FourEyes,
(
4
2

)
= 6 (4 choose 2).

For each tool pair, we randomly picked 15 pairs of workers from each tool, for a

total of four workers. As in Method 1, we computed pixel-level majority voting. The

average performance of all possible tool pairs is summarized in Table 3.4.

Two-tool aggregation improves F1 scores compared to single-tool aggregation.

Every tool pair except Drag-and-Drop × Pin-Placing (0.69) showed increased F1

scores compared to the single constituent tools. The pair gave better F1 scores than

aggregating Pin-Placing alone (0.66), but gave a 0.9% lower F1 score than aggregating

Drag-and-Drop alone (0.70). However, there was no statistically significant difference

between single-tool aggregation of Drag-and-Drop versus multi-tool aggregation of

Drag-and-Drop × Pin-Placing pair. We believe this pair did not increase performance

because Pin-Placing is a tool that is neither reliable nor valid, with the lowest and

scattered performance distribution in terms of precision and recall metrics. One

notable finding about the result is that the highest F1 score achievable from single-

tool aggregation is 0.73 (aggregating Floodfill alone), whereas that from multi-tool

aggregation is 0.81 (aggregating Basic Trace × Floodfill pair), which is a 9.8% (p <

.005) performance improvement with mixing tools. To emphasize the performance

36

improvement in terms of F1 score, we compared the F1 scores of two-tool aggregations

(blue bars) with their constituent tools (red and green bars) in Figure 3.10 (a).

Three-Tool Aggregation

There are four possible three-tool aggregations for FourEyes,
(
4
3

)
= 4 (4 choose

3). For each tool aggregation, we randomly picked 15 combinations of workers: two

from the first tool and one from each of the second and third tools, for a total

of four workers. We maintained the same group size with two-tool aggregation to

avoid interference from the effect of group size during comparison. The same pixel-

level majority voting was conducted. The average performance of all possible tool

combinations is summarized in Table 3.5.

Three-tool aggregation also improves F1 scores compared to single-tool aggrega-

tion. Every tool aggregation except Basic Trace × Drag-and-Drop × Pin-Placing

(0.72) showed increased F1 scores compared to the single constituent tools. The

aggregation gave a better F1 score than aggregating Drag-and-Drop or Pin-Placing

alone (p < .005), but there was no significant difference compared to Basic Trace.

From the result, we observed that the aggregations that include both Basic Trace and

Floodfill showed a significant performance improvement even compared to the supe-

rior constituent tools (p < .05). We hypothesize that including Floodfill in the tool set

significantly improves accuracy because it has the most different error bias compared

to the others. That is, the diversity of systematic error biases affects the multi-tool

aggregation performance. However, compared to two-tool aggregation, adding a third

tool did not improve the performance compared to only combining Basic Trace with

Floodfill. This could be because we lost the benefits of within-group aggregation,

since only one worker contributed to each of the second and third tool types. We

compared the F1 scores of three-tool aggregations (blue bars) with their constituent

tools (red and green bars) in Figure 3.10 (b).

37

Precision Recall F1 score

Basic Trace × Drag-and-Drop 0.61 (0.13) 0.98 (0.03) 0.74 (0.10)

Basic Trace × Pin-Placing 0.62 (0.13) 0.95 (0.08) 0.73 (0.11)

Basic Trace × Floodfill 0.74 (0.12) 0.94 (0.11) 0.81 (0.11)

Drag-and-Drop × Pin-Placing 0.57 (0.14) 0.92 (0.11) 0.69 (0.13)

Drag-and-Drop × Floodfill 0.71 (0.11) 0.93 (0.09) 0.79 (0.09)

Pin-Placing × Floodfill 0.69 (0.13) 0.86 (0.14) 0.75 (0.12)

Table 3.4: Average (and stdev) of majority voting on two-tool aggregation.

Precision Recall F1 score

Basic Trace × Drag-and-Drop × Pin-Placing 0.60 (0.13) 0.96 (0.05) 0.72 (0.11)

Basic Trace × Drag-and-Drop × Floodfill 0.70 (0.12) 0.97 (0.04) 0.80 (0.09)

Basic Trace × Pin-Placing × Floodfill 0.69 (0.12) 0.94 (0.09) 0.78 (0.10)

Drag-and-Drop × Pin-Placing × Floodfill 0.65 (0.13) 0.92 (0.09) 0.75 (0.11)

Table 3.5: Average (and stdev) of majority voting on three-tool aggregation.

Precision Recall F1 score

All Four Tools 0.65 (0.12) 0.95 (0.07) 0.76 (0.09)

Table 3.6: Average (and stdev) of majority voting on four-tool aggregation.

Four-Tool Aggregation

For the aggregation of four tools, we randomly picked 15 combinations of workers,

one from each tool. The average performance is summarized in Table 3.6. The

comparison of F1 scores of four-tool aggregation with that of the constituent tools is

summarized in Figure 3.10 (c). Four-tool aggregation improves the F1 score compared

to any of the constituent tools. The four-tool aggregation results give us insight that

increasing the number of tools to be combined does not linearly increase the aggregate

performance. We hypothesize that the small group size hinders performance more

than the benefits from adding more tool types, since having only one worker from

one tool type results in a lack of error correction from within-tool aggregation. That

is, small groups with more tools do not necessarily improve performance, and to fully

benefit from adding more tools, the group size should increase as well.

38

3.5.3 Method 3. Multi-Tool Aggregation with EM Method

In this section, we model the multi-tool aggregation problem as an optimiza-

tion problem and use expectation maximization (EM) to estimate consensus-based

semantic image segmentations. For certain tool aggregations, EM-based multi-tool

aggregation significantly improved output accuracy over majority voting.

We model our problem as follows: Assume M crowd workers segment an object

in an image A having N total pixels. Each pixel is labeled as either 1 (object) or

0 (background) by workers. The label a worker m assigns to each pixel is denoted

as zmn ∈ {0, 1}. We denote all labels from worker m as a vector Zm. The true

label yn, where n = 1, . . . , N , of each pixel is unknown. The true labels of A to be

estimated are denoted as a vector Y . In the Dawid-Skene algorithm, it is assumed

that the probability of worker m labeling a pixel is independent of choosing a pixel,

i.e., it is a constant over n. That is, we assume i.i.d. (independent and and identical

distributed) pixels. This assumption is acceptable because we do not have a priori

knowledge about the relationship between different pixels, making all pixels have the

same chance of being included in a selection. In addition, we denote by θ the confusion

matrices set to be estimated. We can estimate the true labels Y by maximizing the

marginal log-likelihood of the observed worker labels.

l(θ) := log
(∑
Y ∈{0,1}n

L(θ;Y ,Z)
)
. (Eq. 2)

The EM algorithm applies an expectation step and a maximization step iteratively:

Expectation Step: Calculate the expected value of log-likelihood, with respect

to the conditional distribution of Y given Z under the current estimate of θ.

Maximization Step: Find the estimate θ that maximizes the expectation of

marginal log-likelihood.

39

Figure 3.9: The flowchart shows the EM algorithm we adopted for the optimization.
Two different segmentation tools, h1 and h2, each with different biases, b1
and b2 (respectively), pass segmented images to the system. We estimate
the weights, w1 and w2, to approximate the performance of f .

The Expectation and Maximization steps are repeated until the estimations con-

verge. The diagram in Figure 3.9 shows how the process is applied to our problem.

The scene image is given as an input to two tools, h1 and h2, that have different

error models, b1 and b2, respectively. Crowd workers use the tools to segment a query

object, and the responses are transferred to the EM algorithm. Initial latent variables

are set as the majority voting result, and the confusion matrix for each response is

updated based on the initial assumption of the latent variables. Confusion matrices

are updated by counting the number of false positive, false negative, true positive,

and true negative pixels. Once the confusion matrices are updated for every pixel,

the new estimations of latent variables are updated until convergence.

40

Precision Recall F1 score

Basic Trace × Drag-and-Drop 0.63 (0.14) 0.98 (0.02) 0.75 (0.11)

Basic Trace × Pin-Placing 0.63 (0.14) 0.93 (0.09) 0.74 (0.12)

Basic Trace × Floodfill 0.75 (0.13) 0.93 (0.12) 0.81 (0.12)

Drag-and-Drop × Pin-Placing 0.59 (0.15) 0.90 (0.12) 0.70 (0.13)

Drag-and-Drop × Floodfill 0.71 (0.13) 0.90 (0.11) 0.78 (0.10)

Pin-Placing × Floodfill 0.72 (0.14) 0.81 (0.14) 0.75 (0.14)

Table 3.7: Average (and stdev) of the EM method on two-tool aggregation.

Precision Recall F1 score

Basic Trace × Drag-and-Drop × Pin-Placing 0.61 (0.13) 0.99 (0.02) 0.74 (0.10)

Basic Trace × Drag-and-Drop × Floodfill 0.60 (0.13) 0.95 (0.07) 0.72 (0.11)

Basic Trace × Pin-Placing × Floodfill 0.74 (0.13) 0.93 (0.12) 0.81 (0.12)

Drag-and-Drop × Pin-Placing × Floodfill 0.57 (0.15) 0.92 (0.11) 0.69 (0.13)

Table 3.8: Average (and stdev) of the EM method on three-tool aggregation.

Precision Recall F1 score

All Four Tools 0.61 (0.13) 0.99 (0.02) 0.74 (0.10)

Table 3.9: Average (and stdev) of the EM method on four-tool aggregation.

Two-Tool Aggregation

For a fair performance comparison, we used the same 15 worker groupings from

Method 1 (Single-Tool Aggregation with Majority Voting) and 2 (Multi-Tool Aggre-

gation with Majority Voting). We consider the ground truth labels as latent variables

and estimate them jointly with the unknown parameters, the weight per tool on each

pixel, of our model. The accuracy of two-tool aggregation with the EM method is

summarized in Table 3.7. The comparison of F1 scores of the tool pairs with that

of the constituent tools is summarized in Figure 3.10 (a). The numbers for majority

voting on single-tool aggregation are obtained from Method 1, and the numbers for

majority voting on multi-tool aggregation are obtained from Method 2. The p-values

were computed using two tailed t-tests with Bonferroni correction applied after each

t-test. The results show that EM-based multi-tool aggregation always performed sig-

41

(a) Two-tool aggregation

(b) Three-tool aggregation (c) Four-tool aggregation

Figure 3.10: Accuracy comparison of different aggregation methods based on four
tools: Basic Trace (T1), Drag-and-Drop (T2), Pin-Placing (T3), and
Floodfill (T4). The blue bars are multi-tool aggregation with major-
ity voting and the purple bars are multi-tool aggregation with the EM
method. The red bars are single-tool aggregation of the best performing
tool and the green bars are single-tool aggregation of the worst per-
forming tool among all constituent tools. * significant at p < .05; **
significant at p < .01, both compared to EM-based multi-tool aggre-
gation (two-tailed t-test). Leveraging tool diversity always performed
significantly better than the inferior constituent tool, and performed at
least as well as the superior tool.

nificantly better than the inferior constituent tool, and performed at least as well as

the superior constituent tool. The summarized result shows that the EM method sig-

nificantly improves the performance of the tool pairs compared to uniform majority

voting, except for the two tool pairs (Drag-and-Drop × Floodfill pair and Pin-Placing

× Floodfill pair). We observe that the highest aggregate-performance tool pairs were

combinations of a high-precision (low-recall) and a high-recall (low-precision) tool

(< 3%), as shown in the third and fifth bar groups in Figure 3.10 (a).

42

Three-Tool Aggregation

For a fair performance comparison, we used the same 15 worker groupings from

Method 1 and 2. We applied EM-based weight assignment for each pixel by setting the

majority voting result as the initial weights. The accuracy of three-tool aggregation

with EM is summarized in Table 3.8.

The comparison of F1 scores of the three-tool aggregations with that of the con-

stituent tools is summarized in Figure 3.10 (b). Similar to the two-tool aggregation

result, the EM method improved the F1 score significantly, but the gain was small

(below 2%). The EM method significantly improved the performance of three-tool ag-

gregation compared to majority voting, except for the aggregation of Drag-and-Drop

× Pin-Placing × Floodfill. It is worth noting that while the EM method significantly

improved accuracy for the tool pair Drag-and-Drop × Pin-Placing, adding Floodfill

and forming a three-tool aggregation limited the benefits of the EM method. This

implies that a more adaptive distribution of tool weights might be necessary when

increasing tool aggregation complexity. This is further discussed in Section 3.6, where

a correction mechanism is proposed to overcome the limitation of typical consensus-

based pixel-level aggregation.

Four-Tool Aggregation

We apply EM-based pixel-level weight assignment to the four-tool aggregation

condition to evaluate if the method could further improve aggregate accuracy. We

used the same 15 worker groupings from Method 1 and 2. The result shows that the

EM method significantly (p < .01) improves the aggregate performance of four-tool

aggregations. However, as in other tool aggregations, the gain was small (below 1%).

The accuracy is summarized in Table 3.9. The comparison of F1 scores of the tool

pairs with those of the constituent tools is summarized in Figure 3.10 (c).

43

In summary, combining answers from multiple tools increased the final segmen-

tation accuracy compared to using the best single constituent tool alone. This per-

formance improvement could be achieved by simple majority voting of segmentation

results from different tools, and EM-based weight assignment to different tools could

further improve the performance gains from majority voting. We analyzed multi-

tool aggregation by varying tool combinations, and learned that 1) the diversity of

systematic error biases across tools can lead to further improvement in the aggre-

gation performance, 2) increasing the number of tools does not necessarily improve

the multi-tool aggregation accuracy, and 3) offsetting the trade-off between precision

and recall is critical to improving aggregate performance in the image segmentation

domain. We believe that maintaining a sufficient amount of within group aggregation

for each tool by increasing the group size of total workers is necessary to improve the

multi-tool accuracy when increasing the number of tool types. In the next section,

we will investigate how to further improve aggregate performance by exploring the

error correction mechanism for multi-tool aggregation.

3.6 Error Correction Methods for Multi-Tool Aggregation

To further improve the accuracy of our tool diversity scheme, we explore the idea

of using error correction mechanisms—post-hoc processes to further improve the ag-

gregate performance by correcting errors that remain even after aggregation. The

exploration extends the use of our tool diversity approach by providing options to

improve aggregate accuracy even further when combining workers’ answers across

different tools. We first propose a morphological masking technique that can auto-

matically balance errors between two biased tools. In image processing, morphological

operations are defined as non-linear operations that transform images according to

the shapes or features in an image. Our proposed method uses a non-linear operation

to alter the label of each pixel by referring to the spatial feature of an aggregated

44

(a) Level of agreement by consensus-based ag-
gregation.

(b) Ideal level of agreement to approximate
ground truth.

Figure 3.11: The motivational concept of the morphological masking scheme. (a)
S1 indicates one segmentation, and S2 indicates another. The yellow
GT line indicates ground truth segmentation. Using general consensus-
based aggregation (majority voting or EM), all the pixels within the area
between S1 and S2 have the same level of agreement, w1. However, to
approximate GT, ideally, the area A (S1 ∩ S2

c) needs a different level of
agreement as in (b), with w11 and w12. Our correction mechanism can
approximate GT by giving an updated level of agreement to pixels by
referring to the agreement level of neighboring pixels.

result. Next, we explore the effect of varying the threshold parameter of the EM

algorithm, and suggest a simple methodology to adjust the threshold to find the best

optimization parameter for each object to be segmented.

3.6.1 Morphological Masking to Offset Biases between Different Tools

In Section 3.5, we observed that the aggregate accuracy of multiple tools can be

improved when each of the tools have different systematic error patterns. In this

section, we introduce a region-based morphological masking technique that synthe-

sizes more accurate segmentations by propagating the level of agreement of neighbor-

ing annotations. The morphological masking technique further compensates for the

45

precision-recall trade-off by assigning an updated level of agreement to each pixel and

segmenting the image based on a new theshold parameter.

The proposed correction mechanism can help improve aggregate accuracy by ad-

dressing several limitations faced by many consensus-based pixel-level aggregation

methods, in particular those due to the fact that they do not fully make use of the

rich spatial correlations between pixels in an image. The limitations and our corre-

sponding solutions can be summarized as follows:

1. Conventionally, the label of each pixel is estimated independently without refer-

ring to its neighboring pixels’ labels, despite the fact that they can have strong

spatial correlations. We propose utilizing the spatial correlation by considering

the average level of agreement of neighboring pixels when deciding the final level

of agreement of a single pixel.

2. In most consensus-based methods, pixels with the same level of agreement for

the same label are treated as equivalent, making it impossible to divide them

into subgroups to increase the precision in labeling. We combat this problem

by updating the level of agreement of pixels based on the average agreement

of the neighboring pixels. For example, as in Figure 3.11 (a), let’s assume

that S1 and S2 are two different segmentation results, while GT is the ground

truth segmentation to be estimated. In terms of precision and recall, S1 results

in low precision and S2 results in low recall. With general consensus-based

methods, we cannot approximate the ground truth boundary because the area

A (S1∩S2
c) with agreement level w1 cannot be labeled with two different labels,

e.g., foreground and background. However, by assigning the updated level of

agreement to pixels as in Figure 3.11 (b), we can approximate GT by setting a

threshold value between w11 and w12.

Therefore, we propose a technique that applies morphological masking on each

46

pixel to refer to its neighboring pixels, so that, as in Figure 3.11 (b), pixels can have

better updated level of agreements.

Method

The morphological masking that we introduce is a region-based operation that

can modify the segmentation result by synthesizing more accurate bounds through

referring to the average of the surrounding annotations. In the method, the label of a

pixel is updated by referring to the sum of the neighboring pixels’ level of agreement:

w̄p =
M−1∑
i=0

wi

M
(Eq. 3)

where w̄p is the updated level of agreement of pixel p, M is the number of pixels inside

the mask, and wi is the original level of agreement of pixel i (the neighboring pixels).

We also set a threshold parameter that decides the label of each newly updated pixel.

lp =

1, w̄p > t

0, otherwise

(Eq. 4)

where lp is the label of pixel p, and t is the threshold parameter. The threshold

parameter can be arbitrarily chosen within 0 < t < 1 by the system designer.

Morphological masking updates the pixel agreement level around the transition

area, for example, pixels close to line S1 and S2 in Figure 3.11 (a), where the level

is changing from w0 to w1 and from w1 to w2, respectively. Note that the pixels far

from the transition area do not get influenced by the masking. If t is set small, the

aggregated recall increases because pixels with a low agreement level can be labeled

as an object. If t is set large, the precision increases because only pixels with large

47

level of agreement can be labeled as an object. This feature makes it possible to

better offset the precision-recall trade-off in multi-tool aggregation.

Evaluation and Results

We applied five different masking sizes and two different threshold parameters to

explore the effect of our morphological masking technique. We randomly picked 10

random sampling of four workers for each tool combination types as in Section 3.5

to avoid any bias from repeatedly choosing a good or bad combination of workers.

The mask sizes chosen are N = [5, 15, 25, 35, 45] for N ×N masks, and the threshold

parameters chosen are t = 0.2 and t = 0.5. The experiment was implemented in

Matlab 9.4 on 3.5 GHz Intel Core i7. We computed all five mask size conditions

at once, and it took about a minute per object to compute majority voting of four

workers, and about 1.4 minute per object to compute the EM-based weighting of four

workers per object.

Figure 3.12 shows the morphological masking results of two different threshold

parameters: 0.2 and 0.5. As expected, a low threshold (t = 0.2) increases recall but

decreases precision, and a high threshold (t = 0.5) increases precision but decreases

recall. The masking size also affected the performance. With t = 0.2, as the mask size

increases, F1 score decreased because of the steep decrease in precision but the low

increase in recall. With t = 0.5, as the mask size increases, F1 score increased except

for Floodfill (annotated as T4 in the figure) because precision largely increased while

recall degraded no smaller than 0.55. The Floodfill (T4) results in both Figure 3.12

(b) and (d) show a nonlinear spike at mask size 25× 25. This is because there were

less valid data points for higher thresholds and larger mask sizes. There were also

many zero-precision data points when using Floodfill, which we did not include when

computing the average.

To further explore the effect of our morphological masking, we investigate the

48

(a) F1 score t = 0.2 (b) F1 score t = 0.5

(c) Precision t = 0.2 (d) Precision t = 0.5

(e) Recall t = 0.2 (f) Recall t = 0.5

Figure 3.12: Results of single-tool aggregation with different threshold parameters
for the morphological masking (T1 =Basic Trace, T2 =Drag-and-Drop,
T3 =Pin-Placing, and T4 =Floodfill). The left column shows F1 score,
precision, and recall for t = 0.2 and the right column shows F1 score,
precision, and recall for t = 0.5. With t = 0.2, the F1 score degraded by
applying the mask. This is because of the large decrease in the precision
with only a small increase in recall. With t = 0.5, the F1 score improved
by applying the mask up to 6%. (except for Floodfill). This is because
the precision largely increased while recall degraded no larger than 0.23.

49

(a) 2 tools combination (Majority Voting) (b) 2 tools combination (EM)

(c) 3 tools combination (Majority Voting) (d) 3 tools combination (EM)

(e) 4 tools combination (Majority Voting) (f) 4 tools combination (EM)

Figure 3.13: F1 scores of multi-tool aggregation with different masking sizes
(T1 =Basic Trace, T2 =Drag-and-Drop, T3 =Pin-Placing, and
T4 =Floodfill). The left column is F1 score of majority voting and the
right column is F1 score of EM-based weighted aggregation. First row is
two tools pairs, second row is three tools combinations, and third row is
four tools combination results. Every multi-tool combination condition
improved accuracy up to 6% by applying our masking technique. The
mask size that induced the largest performance improvement varied by
tool combination types.

50

(a) Two tools combination (b) Three tools combination (c) Four tools combination

Figure 3.14: F1 scores of every tool combination with five different EM thresholds
(uniform intervals from 0.1 to 0.9). The result shows that the maximum
performance that can be achieved varies by the threshold value, implying
that correctly setting the EM threshold parameter can further improve
the aggregate accuracy.

effect of mask size with t = 0.5 for all possible tool combinations of FourEyes. The

result is shown in Figure 3.13. The left column shows the effect of masking on

majority voting and the right column shows that on EM-based weighted aggregation.

It is observed that masking always improves the aggregated result further up to

maximum 5.8% for majority voting and 2.4% for EM. The mask size that induced

the largest performance improvement varied by tool combination types. The mask

size with 5, 15, and 35 induced maximum accuracy at least for one combination type.

In summary, applying our proposed morphological masking technique could fur-

ther correct aggregation errors remaining in multi-tool aggregation. The effect of

the masking technique was observed in every tool combination possible by FourEyes.

This implies that not only the tools’ design, but also the settings of the correction

mechanism can affect the aggregate accuracy of multi-tool combinations.

3.6.2 The Effect of the EM Threshold

In Section 5.2, we saw that EM-based weighted aggregation can improve the ag-

gregate accuracy of the tool diversity approach. However, we did not fully investigate

the effect of the threshold parameter of EM on performance. Threshold parameter

51

adjustment can be a simple and easy technique to apply in the post-processing stage

if it gives a better result. Thus, we investigate the effect of different threshold param-

eters for EM-based weighted aggregation. We used the same 10 random sampling of

four workers in Section 3.5 to avoid any sampling bias. Figure 3.14 shows F1 scores

of each tool combination with different EM thresholds. In Figure 3.14(a), we see that

while the best performing EM threshold was 0.5, for Basic Trace × Drag-and-Drop,

the highest performance was achieved when the threshold was 0.7. This is likely

because Basic Trace and Drag-and-Drop are the two tools with high recall but low

precision characteristics. The large threshold parameter compensates the precision

and recall trade-off by inducing higher precision when aggregated. In Figure 3.14(b),

the highest accuracy was achieved when the threshold is 0.5, except for Basic Trace ×

Drag-and-Drop × Pin-Placing, which achieved the highest accuracy when threshold

is 0.7. This is expected because without the Floodfill tool, which has the opposite

characteristics from Basic Trace and Drag-and-Drop, trying to induce higher preci-

sion can help gain better compensation between the precision and recall trade-off.

Thus, we suggest that future system designers to use methods like a parameter sweep

to find the best threshold to leverage the characteristics of each tool.

In summary, the threshold parameter of EM affected the aggregate performance.

Different tool combinations had different threshold parameters that maximize their

performance. This implies that a post-hoc process of choosing the best threshold

parameter can further improve the aggregate accuracy of crowdsourced answers. In

the next section, we discuss some guidelines for system designers who aim to use tool

diversity to improve performance of their crowd-powered system.

3.7 Discussion

FourEyes’s approach of leveraging tool diversity in designing a crowd-powered

system goes beyond the paradigm of conventional crowdsourcing strategies, which

52

divide a task into smaller microtasks and aggregate answers from workers using a

single tool. FourEyes divides tools—and uses multiple different tools with different

systematic error biases—to improve the accuracy of aggregate crowd answers.

A practical concern in applying the tool diversity approach is the cost and effort

in building multiple tools with different (and even complementing) characteristics.

In domains where multiple standardized tools already exist, e.g., image labeling or

handwriting transcription, system designers can simply import and aggregate the

existing tools without having to develop multiple customized tools. In this setting,

we suggest that it is worth using all tools available and applying the various techniques

introduced in this chapter, not just testing to find the best one tool.

However, we found that simply adding more tools does not linearly increase ac-

curacy. This might be due to the small aggregate group size that we purposely con-

strained for fair comparisons with single-tool aggregation. That is, the insufficient

number of within-tool workers contributing might have led to limited improvement

when leveraging multiple tools. This implies that additional judgments such as the

within tool group size could have effects on the overall accuracy of the multiple tools

configuration. From our observation, we expect the multi-tool approach would im-

prove accuracy with a larger aggregate group size, and it would be the same as we

would expect for single-tool aggregation—adding more answers can improve the re-

sult, but sub-linearly. Also, the unique characteristics of a tool need to be considered

as they might affect the crowd’s answer: e.g., the amount of interaction, the com-

plexity of interface layout, etc.

To maximize the benefit of plugging in multiple tools, the tools combination should

be carefully chosen by the system designer to maximize benefits from leveraging

tool diversity. The following section discusses guidelines on using the tool diversity

approach in the system design.

53

3.7.1 Compensation of Biases in leveraging Tool Diversity

To benefit from leveraging tool diversity in building crowdsourcing systems, a sys-

tem or a task should have clear and distinct trade-offs in it’s accuracy and it should

be possible to build tools that can target one aspect at a time. Once different tools

are built with distinctive properties in terms of their systematic biases, an aggregated

method that can offset the biases should be applied to merge the answers. Errors

remaining after aggregation should be corrected using an error correction mechanism

such as our morphological masking. Precision and recall often have an inverse rela-

tionship, where one can be increased at the cost of reducing the other. In the crowd-

sourcing literature, research has investigated different payment schemes to observe the

trade-off between precision and recall on object annotation tasks (Mao et al., 2013).

Our work suggests that different tools can be built to target either high precision or

high recall so that the harmonic means of both can be maximized by aggregating

results from different methods. More generally, our results indicate that leveraging

tool diversity in crowdsourcing tasks can improve aggregate crowd performance by

compensating for various types of inherent individual systematic error biases.

3.7.2 Generalizability

While we demonstrate this new crowdsourcing paradigm using an image segmen-

tation task, it could benefit any task where different approaches to solving the same

problem can be devised. Specifically, tasks that have the following properties would

be especially amenable to our approach:

• Expected correctness grows non-negatively with added worker input. In other

words, on average, quality improves (collective answers converges to correct)

as more worker responses are collected. Problems where majority voting works

would belong to this class.

54

• The task is tractable enough to yield approximately-correct responses from

workers, but responses can be expected to have imperfections. Tasks such as

real-time captioning (Lasecki et al., 2012) or handwriting recognition (Ouyang

and Li , 2012) are examples of such tasks.

• The task has an objectively correct answer, but also tolerates imperfections

from workers’ responses. For example, creative writing tasks would not be a

good fit because there is no single correct answer, and they do not tolerate

imperfections well (e.g., incomplete sentences).

• The expected human error is distributed differently when using different tools.

This way, a diverse tool set can complement a broad range of error types. If

this were not the case (i.e., if the errors were all biased in the same direction),

then we would not expect multiple tools to be significantly more effective than

a single one alone.

Many common crowdsourcing problems (e.g., in computer vision, natural lan-

guage processing, or robotic/UI manipulation) have these properties, suggesting that

a range of domains beyond the one explored in this chapter may also benefit from

our approach.

3.7.3 Envisioned Scenario

In this section, we illustrate how our proposed multi-tool approach and the post

processing methods, aggregation and correction, can be strategically used in a prob-

able scenario.

Crystal is a developer at a computer vision startup company. Her team recently

built several crowd-powered image segmentation tools that work pretty well in the

lab, but she is not sure which one will work the best when deployed in the wild.

Instead of trying to find the best performing tool among them, she decides to use all

55

the tools that the team built by leveraging tool diversity (Section 3.2). Therefore,

for a single segmentation task, the crowd answers from every tool are collected. She

knows that the results will get better than any single tool used alone if the EM method

described in this chapter (Section 5.2) is applied. This improvement can be gained

without having to know the characteristics of each tool a priori. To further improve

the final accuracy, she performs a parameter sweep to find the best EM threshold

for the tool sets based on a small manually-annotated ground truth sample from her

dataset (Section 3.6.2). Additionally, she applies a correction method that updates

the level of agreement on each pixel being labeled as foreground or background. The

correction method leverages the characteristics of the tools to more precisely correct

for each tools’ biases (Section 3.6.1). With this process, the team built a system that

gives more accurate segmentation result than any single tool they built.

3.8 Summary and Future Work

In this chapter, we have introduced a generalizable crowdsourcing approach of

leveraging tool diversity to increase the output accuracy. When building a system,

different tool designs can induce different worker performance, leading to different

systematic error biases. Prior work has used task decomposition (into microtasks)

to increase the reliability of a single task. However, systematic error biases can

persist even after a task is divided as much as possible, if only a single tool is used

for the task. We claim that these systematic error biases can be reduced by using

multiple tools for the same task resulting in improved aggregate crowd performance.

We demonstrated the effectiveness of the tool diversity strategy in the domain of

the semantic image segmentation problem. In our experiments, we used FourEyes,

a crowd-powered image segmentation system that consists of four different image

segmentation tools, to segment diverse objects in different visual scenes. A series

of studies showed that using multiple tools can significantly improve the aggregate

56

accuracy of a single task, especially when the trade-off between the aggregated tools

is high and the aggregation and correction method offsets the trade-off in the right

direction. Overall, our findings present new opportunities and directions for gaining

a deeper understanding of how tool designs influence the aggregate performance on

crowdsourcing tasks, and introduces a new way of thinking about decomposing tasks:

based on tools instead of subtasks.

For future work, we plan to compare our EM-based aggregation method with TISM

method (Griffin and Corso, 2019) that combines multiple different annotations on

the same object with consistent improvement in segmentation accuracy. Performance

comparison with both static images and dynamic videos would allow us to investigate

the benefits of each method in different context.

Future work may investigate methodologies for leveraging tool diversity in other

domains, such as video coding (Lasecki et al., 2014a), annotation of fine-grained cate-

gories (Gebru et al., 2017), or activity recognition (Lasecki et al., 2013b). For instance,

using multiple tools for the same task may benefit any NLP task with multiple chan-

nels. A system designer can devise a tool that focuses on processing a text channel

while sacrificing the audio channel, and aggregate the result with a tool that focuses

on the audio channel, while sacrificing processing the text channel. Furthermore,

this approach may open new ways of optimizing the effort from both humans and

computers—considering them as different resources with different systematic error

biases—to leverage the best of both worlds.

57

CHAPTER IV

Perspective Diversity: Reconstructing 3D Video

Using Particle Filtering to Aggregate Responses

While leveraging tool diversity allows for reducing systematic error biases that are

induced by the tools used to perform the tasks, multiple tools cannot solve all types of

biases. In this chapter, we introduce the approach of leveraging perspective diversity

to reduce biases induced by the data instance itself. The different perspectives from

multiple data instances enable us to complement the lack of information from one

data instance source, reducing the bias created from limited source of information.

4.1 Motivation

Autonomous vehicles collect large quantities of training data by operating, or be-

ing operated, in their target environment. This data is used to teach vehicles how

to adjust to and interact with the physical world (Bojarski et al., 2016). However,

research suffers from a lack of realistic training data, especially of rare and unusual

events such as traffic accidents (Kalra and Paddock , 2016). To collect sufficient train-

ing instances of such rare events, autonomous vehicles need to run and record hun-

dreds of billions of miles in the wild, corresponding to decades of operating a car on

the roads.

58

To provide a specific example, Waymo’s autonomous research vehicles travel and

record approximately 25,000 miles every day on public roads (Waymo, 2018), while

Americans drive a total of nearly three trillion miles every day (Kalra and Paddock ,

2016), a factor of 120 million. Thus, creating realistic simulated 3D scenes (Waymo,

2017) from abundant existing traffic videos crawled from those available on the Web,

such as on YouTube, is a more reasonable method for creating realistic training data

of rare events at scale. This process of creating 3D scenes from real-world monocular

video is called 3D video reconstruction. Generally, manual annotations are necessary

at some point of the process to bridge the sensory and semantic gap between 2D and

3D. To efficiently scale up manual work, one can benefit from crowd-powered tools

that rapidly leverage human effort.

Even though crowdsourcing has been widely studied in image and video annotation

tasks (Bigham et al., 2010; Laput et al., 2015; Vondrick et al., 2013; Zhong et al.,

2015), crowdsourcing techniques for 3D video reconstruction remain underexplored.

This is due to the high degree of difficulty of the task, where even a small error in the

annotation results in a significant error when re-projected into 3D. For example, as

shown in Figure 4.2, a three-pixel difference in the 2D annotation of vehicle height can

result in a 26-meter difference in 3D position estimation. Therefore, quality control is

a crucial component in both the answer aggregation and 3D state estimation stages to

avoid such error amplification. One way to control annotation quality is to filter out as

many poor annotations as possible before aggregation. Providing workers an option

to skip questions about which they are unsure is known to clean the data at the time

of collection (Chang et al., 2017; Shah and Zhou, 2015). We define this action as the

self-filtering of worker annotations. Self-filtering can be particularly useful in image

and video annotation, as oftentimes it is nearly impossible to generate the correct

annotation due to artifacts such as motion blur, change in angle of view, truncation,

or cropping in individual frames (Vondrick et al., 2013). However, this type of filtering

59

Figure 4.1: We propose a crowd-powered human-machine hybrid system for collecting
and aggregating annotations for state estimation of 3D objects in 2D
videos. Our approach leverages particle filtering to accurately reconstruct
3D scenes from 2D sources even with missing annotations, which can
enable generating simulated realistic large 3D datasets.

should be handled carefully because it may result in missing annotations, e.g., where

all the workers self-filtered, resulting in system failure due to the 3D reconstruction

problem being underdetermined—having fewer equations than unknowns.

In this chapter, we propose a novel crowd-powered human-machine hybrid pipeline

for 3D video reconstruction as in Figure 4.1. We make use of the additional infor-

mation in the temporal dimension of the video to improve the quality of aggregated

annotations and their corresponding 3D state estimates. Our particle filter (Thrun,

2000) based aggregation strategy allows us to utilize information from multiple time

frames. This is especially useful when there are “missing” annotations, because the

60

Figure 4.2: A small pixel error in 2D can be amplified in the Z-dimension, result-
ing in a severe position error. The vehicle image on the left shows a
crowdsourced height entry dimension line annotation (in red) and the
corresponding ground truth (in green). The z-dimension estimate can
be calculated from the focal length and the object’s actual height, which
was 721 pixels and 3.59 meters in our experiment, respectively. The
three-pixel difference in dimension line leads to a 26-meter difference in
3D location.

impact of these annotations can be mitigated by referring to neighboring frame es-

timates. This ability allows the requester to set more aggressive filtering thresholds,

which improves theoverall annotation quality despite the risk of incomplete per-frame

annotations. Our work proposes a generalizable solution for crowdsourcing annota-

tions on videos, even in circumstances where annotation is challenging and especially

error-prone.

Popup, our crowd-powered system, uses the crowd to collect annotations of 3D

dimension lines on 2D videos and aggregates these annotations using particle filtering

to generate 3D state estimates of objects of interest. We validate our method on videos

from a publicly available and established dataset (Geiger et al., 2012) of traffic scenes.

The experimental results show that our proposed approach reduces the relative error

by 33% in position estimation compared to a state-of-the-art baseline condition which

uses L-BFGS-B (Zhu et al., 1997) to optimize the re-projection of a 3D cuboid onto

each video frame for state estimates. Further, our proposed aggregation method is

more robust in cases with missing annotations, where the baseline method will fail

due to the problem being underdetermined. Because Popup enables self-filtering, the

annotation time for challenging frames can be reduced by 16%.

61

The main contributions of the chapter are as follows:

• A novel means of aggregating and processing multiple annotations at different

frames in videos using particle filtering, which enables more accurate 3D scene

reconstruction even with an incomplete annotation set.

• Popup, a crowd-powered system that estimates 3D position and orientation

of objects from 2D images, using crowdsourced dimension line annotations on

objects and their actual dimension lengths.

• Experimental results from 17 videos annotated by 170 crowd workers that vali-

date the efficiency of our proposed annotation aggregation method that signifi-

cantly improves the accuracy of 3D state estimation and enables quality control

through more aggressive filtering thresholds.

4.2 Approach

Crowdsourcing leverages human intelligence via platforms such as Amazon Me-

chanical Turk to help perform tasks that are otherwise difficult for fully automated

systems. The task of reconstructing 3D animations from typical RGB videos can ben-

efit from crowd-powered hybrid pipelines because human computation can provide

manual annotations at scale to help the automated system bridge the semantic and

sensory gap between 2D and 3D. Our work proposes novel crowdsourcing strategies

for collecting and aggregating annotations for 2D to 3D scene reconstruction, which

build on previous techniques for crowdsourcing video annotations and improving the

quality of aggregated crowd answers. Our proposed particle-filtering-based aggrega-

tion method enables self-filtering because the missing annotation can be compensated

for via temporal coherency.

To prevent the amplification of annotation errors in 3D state estimates, filtering

as many low quality annotations as possible is a necessary step prior to aggregating

62

and estimating the 3D states of objects. However, missing annotations are difficult

to handle in the subsequent steps and a specialized treatment is necessary to avoid

system failure. Our work is conceptually motivated by inter-frame prediction tech-

niques in video coding (Wiegand et al., 2003), which takes advantage of temporal

coherency between neighboring frames to predict pixel values of missing sub-blocks

in subsequent frames.

To exploit this temporal coherency, we developed a particle filter which operates

on the crowdsourced data. Particle filtering is a recursive Bayesian method which

estimates a probability density function across a state space by maintaining a large

set of particles, each of which represents a potential position (“hypothesis”). Particle

filters are commonly used in simultaneous localization and mapping (SLAM) systems

(Montemerlo et al., 2002; Montemerlo and Thrun, 2007), as well as face (Kwolek ,

2006), head (Oka et al., 2005), and hand tracking (Bray et al., 2004).We selected the

particle filter as our state estimation technique for three main reasons: first, parti-

cle filters can utilize information from neighboring state estimates in tandem with

temporal constraints (e.g., the object has a maximum speed) to refine the state esti-

mate. Second, particle filters can support complex measurement functions, which are

required to compare 2D annotations and 3D states. Last, the particle filter does not

assume an underlying distribution, which allows it to maintain multimodal and non-

Gaussian distributions. This is particularly useful, as incomplete annotations cause

multiple correct hypotheses. To validate the efficiency of our proposed aggregation

and estimation method, we applied two filtering methods for low quality annotations

in two different stages: self-filtering at the time of annotation collection and outlier

filtering at the time of aggregation.

63

(a) Instructions for crowd workers

(b) Worker UI for dimension line annotation

Figure 4.3: Crowd worker instructions and the interactive worker UI. (a) Step-by-step

instructions with good and bad examples are provided. (b) Interactive

Web UI that workers can use to create, adjust, erase, and redraw dimen-

sion lines.

64

4.3 POPUP

Popup leverages dimension line annotations in 2D videos using particle filtering

to achieve efficient and accurate 3D position and orientation estimation. Popup’s

pipeline consists of three main components: (1) dimension line annotation with self-

filtering, (2) outlier filtering of submitted annotation sets, and (3) particle filtering

based estimation of the 3D position and orientation. The overall pipeline is described

in Figure 5.4 By feeding the output from Popup to a simulator such as, CARLA (Doso-

vitskiy et al., 2017), a user can reconstruct and replay in 3D an event captured in

monocular video. This allows the user to generate large realistic simulated training

datasets for data-driven algorithms.

4.3.1 Dimension Line Annotation Tool and Self-Filtering

Popup presents crowd workers with a visualization and annotation web application

that allows them to crop the object of interest from a video frame and then draw

dimension line annotations of the three dimension entries: length, width, and height,

on the cropped object. The dimension lines can be directly drawn on objects in

video frames (Figure 5.6(b) 1) to capture the 3D state of an object without any

three dimensional interactions, e.g., rotation and scaling of a cuboid, which requires

familiarity with interactive 3D tools.

When a crowd worker reviews the dimension line annotation task, an explanation

on the goal of the task is given first (Figure 5.6(a) 1). Then, step by step instruc-

tions are provided with pictures exemplifying desired and undesired annotations as

in Figure 5.6(a) 2 . The instructions also state that workers should click the “cannot

draw” button whenever they are not confident in drawing accurately for a particular

entry (Figure 5.6(a) 3). Once the worker accepts the task, they can perform the first

step: cropping the target object. The worker can click and drag on the given video

frame to draw a box, and use the vertices of the box to adjust the size and ratio.

65

The coordinate information of the box is used in the post-hoc outlier filtering step,

as explained in the next section. Once the worker is done cropping the target object,

she can click the ‘Done with Step 1’ button and proceed to the next step. Note that

a worker works on annotating single frame at a time. The sampling rate of frames to

be annotated by workers can be arbitrarily determined by the user.

The second step is drawing the dimension line entries (length, width, and height)

on the cropped vehicle. The interface has buttons that open a pop-up window to

allow workers to draw line annotations for each dimension entry. Workers can choose

which entry they want to draw first. The interactive pop-up window is shown in

Figure 5.6(b). After drawing a line, a popover message appears at the end of the line

and asks workers “Is this end closer to the camera than the other end of the line?”

The worker can answer this using a radio button. We initially asked this question

to avoid the Necker cube illusion (Necker , 1832) that occurs when drawing a cube

with no visual cues for orientation. The illusion makes it impossible to distinguish the

closer ends of the edges of a cube. However, the closer end annotation was not used in

our final orientation estimation due to a large variance in the answers. Nevertheless,

we report this step in the chapter because it affects the total time of completing the

dimension line annotation task. The interface forces workers to draw more than one

line per dimension to proceed to the next step. The interface allows adjusting already

drawn dimension lines or redrawing them anytime if needed. Workers are provided

with the “cannot draw” button (Figure 5.6(b) 2) which they can click on to self-filter

dimension line annotations if they are not sure about their answer.

4.3.2 Outlier Removal

Popup is designed to robustly handle aggressively filtered annotation sets. Popup

has two post-hoc filtering modules to control the quality of collected annotations.

The post-hoc modules assume multiple submissions per frame so that distribution

66

Figure 4.4: Overview of Popup pipeline. From workers’ dimension line annotation
input (on the 2D image) and additional input of real-world dimension
values of the target vehicle (looked up from an existing knowledgebase),
Popup estimates the position and orientation of the target vehicle in 3D.

statistics can be found. The first step uses the median location of the bounding

boxes workers cropped from the given frame. The second step uses the standard

deviation between the dimension lines drawn for the same object in the same frame.

Step 1: Filtering Annotation Sets

The first step calculates the median bounding box location of submissions to filter

incorrect annotation sets. For each target object, the worker crops the object of

interest from the given frame. Our assumption is that a malicious worker, careless

67

worker, or bot will fail to crop the correct target object. For width and height

independently, if a cropped box does not overlap more than 50% with the median of

the cropped boxes we drop the annotation set of all three entries, assuming the worker

annotated the wrong object. This is designed to entirely filter poor submissions.

Step 2: Filtering individual Annotations

The second step compares the distance of the length and angle of submitted dimen-

sion line annotations from the medians. If a dimension line is outside 1.5×Interquartile

Range (IQR) from the median, it is filtered. This is useful for filtering out mistakes,

e.g., a height entry mistakenly drawn as a length entry or a line added by mistake

and not removed, and to filter out low quality annotations. We use relative distances

instead of absolute values as filtering criteria because the size of an object can differ

from 30 pixels to 300 pixels.

4.3.3 Particle Filtering for Position and Orientation Estimation

Popup uses particle filtering as a method for aggregating annotations and estimat-

ing 3D states of the target object in the video. A particle filter works by generating

many particles, each of which represents a potential state (hypothesis), and using

them to track and combine three probability distributions at each time step (video

frame) (Thrun, 2000):

(1) The previous distribution: where the object was previously.

(2) The transition distribution: where it could be, given where it was previously.

(3) The measurement distribution: where it could be, given the annotated lines.

Using these three distributions, the particle filter handles heavily filtered data

and provides more refined estimates by leveraging temporal constraints. The particle

filter used by Popup embodies these three probability distributions as follows:

68

Figure 4.5: Perceptual distance calculation. The distances (arrows) between end-
points (grey dots of the red line) of an annotation (red line) and corre-
sponding projected hypothesis 3D line pairs (orange, green, blue, pink)
are calculated. The distances corresponding to the best-fitting 3D line
pair are used to calculate probability. These probabilities are used to
determine which hypothesis most closely represents the annotation line,
and therefore the position in 3D space.

(1) Previous State Distribution: The previous distribution corresponds to the

final distribution of the previous time step. As we do not have any information about

the vehicle’s initial pose, we set the distribution at t = 0 as uniform within the bounds

described in Experimental Setting section.

(2) Transition Distribution: The transition distribution describes the probability

of a particle being in a new location given its previous location. This distribution

allows the filter to maintain knowledge of potential states across time, which has two

important implications: first, it means a fully determined system is not necessary

at every time step, so the system is tolerant to self and post-hoc filtering with tight

thresholds. Next, it applies a spatiotemporal constraint by limiting how far the vehicle

can move in successive frames, narrowing the solution space. Typically the transition

distribution is based on knowledge of the vehicle’s kinematics and control inputs,

but as our system has knowledge of neither, we introduce uncorrelated zero-mean

Gaussian noise that spans the set of reasonable vehicle motions.

69

(3) Measurement Distribution: The measurement distribution utilizes the crowd-

sourced annotation lines to determine the likelihood of the hypothesis. To test a

hypothesis, we create the bounding cuboid in 3D space and project it onto the image.

Then, for each annotation, we determine how close its endpoints are to an appropri-

ate pair of edges (Figure 4.5). This distance is then placed on a normal distribution

with a mean of 0 pixels and a standard deviation of 22 pixels. We also calculate

the difference between the lengths of the annotation line and corresponding projected

hypothesis line, and place that on a normal distribution with a mean of 0 pixels and

a standard deviation of 22 pixels. The sum of these two probabilities is used as the

probability of an annotation. This function is referred to as ERR in Algorithm 1.

Algorithm 1 Particle filter algorithm for FourEyes

Let S = {(s1, w1) . . . (sN , wN)} be the set of N particles, where each particle si =
{xi, yi, zi, θi, fi} is one hypothesis with probability P (si) = wi. Let the initial set
of particles S0 be sampled uniformly from the given range for si:
for Every Frame t do

RESAMPLE(S)
for Every (si, wi) in S do

Next State Step: si,t ← si,t−1 +N (0, σ)
z ← 0
for Every Annotation Line do
z ← z + ERR(AnnotationLine, ParticleState)

end for
wi,t = wi,t−1 · z

end for
S ← NORMALIZE(S)
estimate← ARGMAX(wi)

end for

4.3.4 Implementation

The pseudocode for our system is shown in Algorithm 1. Our state space consists

of five dimensions: x, y, z, θ, and f , where x, y, z denote the relative 3D location of

an object from the camera and θ denotes the orientation as illustrated at the bottom

of Figure 5.4. The last dimension, f , denotes the focal length of the camera. When

70

analyzing across a single frame, we perform the action and resampling steps after

iterating through every set of annotations.

4.4 Evaluation

To evaluate the performance of our proposed 3D video reconstruction strategy, we

investigate the accuracy of dimension line annotations before and after pre-processing

filterings: self and outlier filtering. Next, we investigate our proposed annotation

aggregation strategy that uses particle filtering to refer to neighboring frames. For

the experiments, we recruited 170 workers using LegionTools (Gordon et al., 2015) and

routed them from Amazon Mechanical Turk to our crowd-powered system, Popup.

4.4.1 Experimental Setting

The evaluation is done using the KITTI dataset (Geiger et al., 2012) that contains

traffic scenes recorded from a moving vehicle using multiple sensor modalities. Along

with 2D RGB video scenes, the dataset provides ground truth measurements of dis-

tance and orientation of objects relative to the camera. The scenes include occluded,

truncated, and cropped objects that are challenging and thus appropriate to test the

performance of Popup.

In this experiment, we targeted reconstructing the 3D state of one moving vehicle

per video clip. There were a total of 21 video clips in the dataset, of which we used 17,

dropping unfit ones. We sampled 10 frames from each video clip at a rate of 2 frames

per second. For each video clip, we recruited 10 workers to provide annotations. Each

worker annotated every other sampled frame, for a total of five frames. That is, for

each frame, annotations from five different workers were collected. Each worker was

paid $1.10 per task to meet a pay rate of ∼$9/hr. To understand the reason for

self-filtering whenever it happens, we gave the workers a multiple-choice question on

why they self-filtered. The choices were: 1) “The object is heavily occluded”, 2) “I

71

Figure 4.6: Example of dimension line annotations from one of the crowd workers
who participated in our experiment. The yellow bounding box is the area
that the worker cropped in Step 1 of the task, and the red, green, and
blue lines are length, width, and height annotations, respectively, drawn
in Step 2.

don’t understand the instruction”, and 3) “Others”. We asked the workers to still

draw the dimension line after reporting “cannot draw” to directly compare accuracy

with and without workers’ self-filtering.

To obtain the required 3D dimensions of the annotated vehicles, we utilized the

ground truth information included in the KITTI dataset. In a real world deployment

of Popup, the dimensions would be found online or in appropriate documentation

prior to generating the 3D reconstruction. To reduce computation time and avoid

suboptimal estimation, we set bounds for each estimated dimension: −30 ≤ x ≤ 30,

−4 ≤ y ≤ 4, 1 ≤ z ≤ 140, 0 ≤ θ < π, and 500 ≤ f ≤ 1000. Position is given in

meters, orientation in radians, and focal length in pixels. We used 50,000 particles

for all the particle filtering based conditions.

4.4.2 Results from Dimension Line Annotation

In this section, we present our experimental results in collecting 3D dimension line

annotations in 2D videos using the crowd worker interface of Popup. We report the

72

rate of removed annotation sets and individually dropped annotations in the outlier

filtering steps. We also report the rate of annotations dropped in the self-filtering

step. Then, the average accuracy of dimension line annotations with and without

our pre-processing filtering to drop poor annotations is reported. Lastly, we show the

positive effect of self-filtering on latency in data collection.

Ratio of Filtering Annotation Sets

The first outlier filtering step removed low quality annotation sets based on bound-

ing box coordinates, and filtered 7% of 850 submissions. We found that few incorrect

objects (under 2%) remained after the filtering step, which typically occurred when

the majority of workers (at least three out of five) annotated an incorrect object.

Ratio of Self-Filtering

After the first step of outlier filtering, 793 annotation sets remained in the collec-

tion. Each annotation set has three dimension entries (length, width, and height),

resulting in a total 2379 entries submitted. Among the submissions, the number of

self-filtered entries was 176, which were 7% of the total submitted dimension line

entries. Of the self-filtered entries, 34% were filtered for the reason “The object is

heavily occluded”, and 66% were filtered for the reason “Others”. There were no

instances where the “I don’t understand the instruction” option was chosen. When

the “Others“ option was chosen, workers could manually enter the reason behind

their decision. Most explanations were related to insufficient visual information, e.g.,

“the object runs off the given image”, “it’s mostly back view”, and “Bad angle, low

resolution” as shown in Figure 4.9. We initially expected a higher self-filtering rate

because we intentionally included scenes that are hard to annotate, e.g., truncated

and occluded objects. In the discussion section, we discuss the potential reasons for

the low self-filtering rate.

73

Figure 4.7: Height dimension line error of two different conditions (lower is better).
The left is without any filtering, and the right is with both outlier and self-
filtering. After filtering, the average error was reduced by 20% (p < .05).
For each box plot, the circle denotes the median and the triangle denotes
the mean. The lower and upper edges of boxes denote the 25-th and 75-
th percentiles. The whiskers extend to the most extreme data-points not
considered to be outliers.

Ratio of Filtering Individual Annotation

In the final outlier filtering step, we filtered individual annotations based on the

dimension line’s length and angular distance from the median. Of the individual

annotations, 13% were considered outliers and filtered from the collection. We found

that a few (under 3%) outlier annotations did not get filtered with our method. These

were cases where the object was relatively small in the scene, and the variance within

good annotations was very close to the variance between good and bad annotations.

74

Figure 4.8: Average latency of partial and full annotation completion. The full com-
pletion represents typical entries – entries where no worker self-filtered.
The partial completion represents entries that at least one worker self-
filtered. The partial completion entries took an average of 16% more
time to annotate (p < .005). For each box plot, the circle denotes the
median and the triangle denotes the mean. The lower and upper edges
of boxes denote the 25-th and 75-th percentiles. The whiskers extend to
the most extreme data-points not considered to be outliers.

Accuracy of Dimension Line Annotations

We examined the effect of pre-processing filtering on the average accuracy of

dimension line annotations. Since the dimension line ground truth is not provided by

the KITTI dataset, we projected the actual vehicle height of the target vehicle onto

the image plane, and compared the difference from the projected height line with the

annotated dimension line in pixels. This analysis was not performed on width and

length dimension lines as they are not parallel to the image plane. In our experiment,

the distributions were all approximately normal, but with positive skew. Because the

distributions were skewed, we computed p-values using Wilcoxon Rank-Sum test. As

75

shown in Figure 4.7, the filtering reduced the average error of dimension lines by 20%

(p < .05) on average. Note that the mean error after filtering is under 10 pixels (9.8

pixels). Considering that the frame heights are 375-pixel, the average error is under

3% of the full height of a frame.

Time Savings from Self-Filtering

We investigated the average latency of partial and full annotation completion.

Partial completion is defined as where at least one worker self-filtered, representing

challenging entries. Full completion is defined where no worker self-filtered, repre-

senting typical entries. Because the distributions were skewed normal, we computed

p-values using Wilcoxon Rank-Sum test. As shown in Figure 4.8, we found annota-

tions took approximately 16% longer for partial completions (p < .005). The result

suggests that two things: first, self-filtering can reflect a worker’s confidence level as

we intended in the design stage. we can reduce total latency in annotation collection

if we encourage workers to self-filter the challenging entries, because they can save

time on the drawing activity by skipping them. That is, we can save 16% of the

annotation time for the hard annotations if the self-filtering option is provided.

4.4.3 Results from Aggregation and State Estimation

In this section, we evaluate our annotation aggregation and state estimation

method under different conditions by comparing it against the ground truth from

the KITTI dataset (Geiger et al., 2012). For all evaluations, we dropped outliers; any

data point outside 1.5×Interquartile Range (IQR) was removed for fair comparison

between conditions.

76

Evaluation Metrics

For the evaluation of the accuracy of the state estimates, we used two metrics:

a distance difference metric, and an angular difference metric. The distance differ-

ence metric is the Euclidean distance between the ground truth and the estimate.

The angular difference metric corresponds to the smallest angular difference between

estimated orientation and the ground truth orientation (Equation Eq. 1):

DistanceDiff =
√

(xg − xe)2 + (yg − ye)2 + (zg − ze)2

AngularDiff = |(θg − θe) % π/2|
(Eq. 1)

where xg, yg, and zg are the 3D ground truth, xe, ye, and ze are the 3D state estimate,

θg is the ground truth orientation, and θe is the orientation estimate.

Baseline and Conditions

To assess the success of the proposed inter-frame aggregation and 3D state esti-

mation strategy, we compare the performance of our particle filtering based method

with a state-of-the-art baseline method that uses geometric reprojection and L-BFGS-

B (Zhu et al., 1997) optimization. Note that the baseline does not refer to annotations

in other frames. The two conditions that are compared to the baseline method are

particle filtering without inter-frame referencing and particle filtering with inter-frame

referencing. In addition, we look at the difference in window size for inter-frame ref-

erencing: using one, three, five, and 10 frames as window size.

• Baseline: The baseline method reprojects the 3D cuboid onto a given video

frame and compares the corner location of the reprojection with the endpoints

of the average dimension lines drawn for the target vehicle. This comparison

is used as the cost function, and the L-BFGS-B optimization method (Zhu

77

et al., 1997) is used for minimization. The baseline method cannot handle cases

where a whole entry (e.g., all height, length, or width annotations) is missing.

The baseline method breaks in this condition because the optimization problem

becomes underdetermined. Since the baseline method cannot refer to other

frames’ annotations by utilizing spatiotemporal constraints, the baseline was

only run for single frame based estimation.

Figure 4.9: Example of challenging frames where more than 3 out of 5 workers self-
filtered. The cases include limited side view, occlusion, and low resolution.

78

• C1. Particle filter without inter-frame referencing: For a fair comparison

with the baseline, this condition runs the particle filtering algorithm without

referring to other frames. Since this condition does not refer to other frames,

the solution is underdetermined under more aggressive filtering threshold. The

comparison between the baseline and this condition emphasizes the effect of

using inter-frame referencing which is enabled by particle filtering based anno-

tation aggregation.

• C2. Particle filtering with inter-frame referencing: The strength of us-

ing particle filtering is that it refers to other frames to compensate for missing

annotations. For this condition, we first evaluate the performance of different

window sizes for inter-frame referencing: one, three, five, and 10. After evalu-

ating the performance of different window sizes, we compare the performance

of the best window size with the baseline performance.

Evaluation 1: Particle Filter Without Inter-Frame Referencing

To evaluate the performance of the particle filtering method, we compared the

performance of condition C1 with the baseline. Figure 4.10(a) shows the position and

orientation performance of the two conditions. In each graph, the left box plot shows

the baseline condition applied to individual frames, and the right box plot shows

condition C1: particle filtering applied to individual frames. Note that we present

our results as a box and whisker plot through out this section, as the distributions

were all approximately skewed normal with positive skew. Because they were skewed,

we computed p-values using Wilcoxon Rank-Sum test. The summarized result shows

that in terms of position estimation, the baseline and the proposed particle filtering

method perform similarly (no significant difference was found). In terms of orientation

estimation, we observed a 53% (p = .11) lower mean for our proposed particle filtering

method compared to the baseline. However, while the effect size was medium-large

79

(d = 0.65), the results were only approaching statistical significance (p = 0.11).

We assume that the difference in performance comes from how the two methods

incorporate dimension line evidence. The baseline method averages given dimension

lines, and considers the average as an edge of the 3D re-projected cuboid to minimize

the difference from the projection and the dimension lines. In contrast, the particle

filtering based method does not compute an average, but compares each dimension

line to the 3D re-projected cuboid to update the orientation estimation. This enables

retaining information from all given dimension line annotations.

Overall, the result implies that without inter-frame referencing, our proposed

method is comparable to the state-of-the-art baseline.

Evaluation 2: The effect of Inter-Frame Referencing

The primary strength of using particle filtering based estimation is in that we can

refer to other frames’ state estimates when estimating the current frame’s state, which

can fill in the missing information caused by either outlier-filtering or self-filtering.

We looked at four different window sizes and window size of three had the lowest

average error. There were no decrease in error was supported by enlarging the win-

dow size. Therefore, we performed statistical significant test of using window size

three compared to not using inter-frame referencing. The summarized result in Fig-

ure 4.10(b) shows that referencing to three neighboring frames (including the current

frame) results in 37% improved accuracy compared to not referring to neighboring

frames in terms of position estimation (p < .001). However, orientation estimation

accuracy did not improve by referring to neighboring frames.

Evaluation 3: Baseline vs. Proposed Method

To evaluate the performance of Popup, we compare the baseline result with Popup

using three frame referencing—the best performing window size tested. Figure 4.10(c)

80

shows the position and orientation estimation results. In terms of position estimation,

the average error was reduced by 28% (p < .001). In terms of orientation estimation,

the average error was reduced by 54%, but the results were not significant (p = .105).

The result shows that the proposed aggregation and estimation strategy for crowd-

sourcing image annotations in videos can handle noisy and incomplete annotation

sets, and also outperform the baseline condition in terms of position estimation.

4.5 Discussion

In this section, we discuss about the effect of inter-frame referencing in video

annotation, factors that can affect workers’ self-filtering behavior, and factors affecting

the final 3D estimation quality.

4.5.1 Inter-Frame Referencing in Video Annotation

The evaluation results show that referencing annotations from neighboring frames

can increase estimation accuracy in video annotation tasks. We tested four different

window sizes, and the window size affected the impact of inter-frame referencing. For

position estimation, a larger window size seemed to improve the estimate accuracy,

but the effect was not linear and maximum at the frame window size of three. For

orientation estimation, the performance was consistent from window size one to five.

The performance largely degraded for the 10-frame window. We speculate that the

reason we did not observe progressive improvement in accuracy with increased window

size is because of propagation of bad annotations. If one frame is poorly annotated,

particularly early in the video, it will affect all other frames within the window. It

follows that a larger window size allows local errors to affect more frames, which

results in a larger aggregated overall error. For example, a critical error in frame k

will affect only frame k − 1 and k + 1 in a three-frame window, but will affect all 10

frames in a 10-frame window.

81

4.5.2 Factors Affecting Self-Filtering

We believe that the self-filtering rate and accuracy can vary by various factors:

the quality of instructions, the complexity of the task, and the mechanism of the

crowdsourcing platform. The instruction and task can be designed to help workers

clearly understand the benefit of self-filtering. Shah et al. (Shah and Zhou, 2015)

gave a clear incentive plan to the workers, which encouraged them to use the self-

filtering option (’I’m not sure’ option) wisely. This setting resulted in the highest

data quality in their experiment. We also believe that the mechanism of the platform

affects workers’ behavior on using the self-filtering option. In our post survey, we

asked workers who completed our task if they think providing any answer is better

than no answer at all when they are not confident enough to provide an answer. One

worker answered, “I think an attempt at an answer is better than none at all. Even

if you aren’t sure an attempt at least shows your [sic] trying to help the study and

not just wasting everyone’s time”. Another answered, “Try my level best to satisfy

the requester”. This implies that workers are reluctant to choose such an option due

to the default incentive mechanism. Therefore, the requester should clearly design

an incentive mechanism and mention in the task that how they would like workers to

use the self-filtering option.

4.5.3 Other Factors Affecting State Estimation Accuracy

We also note that the performance of the optimization method can affect the 3D

estimation results. For example, the parameters — such as the search bounds in

solution space or number of iterations — should be carefully chosen to best fit the

targeted source’s profile. Moreover, the type of optimization model can affect the

estimation result. Not all optimization methods would solve our problem in general

because the parameters to be estimated do not have a linear relationship. Therefore,

the optimization model should also be carefully chosen based on the characteristics of

82

the problem to be solved. Another factor that affects 3D state estimation accuracy is

the consensus between workers and the filtering methods. If the majority of workers

provide wrong annotations, in the current setting, we cannot detect or filter them

with the proposed filtering strategies. For example, we had a frame where three out

of five workers annotated the wrong vehicle, so we failed to filter out the majority

answers, even though they were incorrect. To avoid these cases, a human-in-the-loop

step to check the quality of the bounding box or the annotation could be added.

4.6 Summary

In this chapter, we have introduced a new crowdsourcing approach to collecting

and aggregating image annotations in videos more efficiently and accurately. Our

approach leverages particle filtering to aggregate annotations from multiple frames

and provide an accurate final output even in the presence of incomplete or missing

annotations. We introduced Popup, a human-machine hybrid system that realizes the

proposed methods. The study results show that the proposed particle filtering based

aggregation can not only handle noisy and missing annotations, but also provides

more accurate 3D state estimations of objects in 2D videos. Because the proposed

method is robust to missing annotations, one can reduce the overall latency of the

data collection stage by allowing the annotators to self-filter. The output from Popup

can be passed to simulation software to enable generating a realistic and large 3D

training dataset of rare events for autonomous vehicles and machines to learn.

83

(a) Performance of baseline vs. C1

(b) Performance of particle filtering without- vs. with inter-
frame referencing

(c) Performance of baseline vs. particle filtering with inter-
frame referencing

Figure 4.10: (a) Without inter-frame referencing, the particle filter’s performance is
comparable to the baseline. (b) Inter-frame referencing reduced error
significantly. Window size 1 indicates without inter-frame referecning.
(c) Our proposed inter-frame referencing particle filtering method out-
performs the baseline. For each box plot, the circle denotes the median
and the triangle denotes the mean. The lower and upper edges of boxes
denote the 25-th and 75-th percentiles. The whiskers extend to the most
extreme-most data points that are not considered to be outliers.

84

CHAPTER V

Knowledge Diversity: Improving Accuracy of 3D

Object Reconstruction via Crowdsourced Joint

Object Estimation

The previous two chapters introduced the approach of leveraging tool diversity

and perspective diversity as a means to reduce systematic biases that are due to

the tools being used or the data instances given, respectively. In this chapter, we

introduce the idea of leveraging the knowledge diversity of crowd workers as a means

to overcome uncertainties caused by a lack of information.

5.1 Motivation

Extracting precise 3D spatial information from existing abundant 2D datasets to

create high quality 3D training data is a grand challenge in computer vision (Chen

et al., 2019, 2016; Konrad et al., 2012) due to its potential impact on facilitating real-

world applications, such as self-driving vehicles (Pan et al., 2017; Ramakrishnan et al.,

2019), interactive assistive robots (James and Johns , 2016; Sorokin et al., 2010), or

augmented and virtual reality (Orts-Escolano et al., 2016; Sankar and Seitz , 2017).

This conversion of 2D to 3D typically involves collecting manual annotations, where

people provide computers with the necessary information to bridge the gap between

85

Figure 5.1: This chapter introduces an approach to crowd-powered estimation of the
3D location of a target object (here, obj0) by jointly leveraging approx-
imate spatial relationships among other in-scene objects (obj1-obj4).
Our approach lets crowd workers provide approximate measurements of
familiar objects to improve collective performance via our novel annota-
tion aggregation technique, which uses the spatial dependencies between
objects as soft constraints that help guide an optimizer to a more accurate
3D location estimate.

2D and 3D, e.g., pixel-level indications of where the edges of an object are. To collect

these annotations at scale, crowdsourcing is typically used due to its convenience in

prompt and flexible recruiting (Dai et al., 2017; Bell et al., 2013).

In settings where there is insufficient information about the camera and/or scene

to deterministically compute 3D information based on 2D annotations, a computa-

tional process such as parameter estimation with iterative optimization is performed

to search for a solution based on the annotations (Lowe, 1991; Lu et al., 2000; Leng

and Sun, 2009; Cao et al., 2011). However, there are factors that make the optimiza-

tion process challenging to find an accurate solution, such as the search area for the

solution being large. Moreover, the annotations are usually noisy, having limitations

due to the finite resolution of the image, which limits subpixel-level information, and

restricted perceptual and motor resolution of human annotators, which limits the

annotation’s preciseness (Song et al., 2019b).

In this chapter we focus on the task of estimating the 6D pose (3D location

and orientation) of a particular target object. Our key insight is that the joint use

86

of multiple in-scene objects enables more accurate estimation (that can go beyond

the limits of pixel resolution) while providing a means of leveraging more diverse

knowledge from the crowd. Our approach converts approximate judgments about

the reference objects that are near the target object into soft constraints for an

optimization algorithm that recovers the state estimation of the target object. As

shown in Figure 5.1, the soft constraints for the optimizer penalize unlikely solutions

and improve the chances of finding more accurate ones. By relaxing the precision

requirements for usable annotations, our approach also allows crowd workers with

diverse types and levels of knowledge to contribute to the system performance.

To understand the potential performance benefits of the proposed approach, we

conducted a characterization study with a controlled experiment using a synthesized

virtual dataset with absolute ground truth data. Based on the controlled study

results, we developed C-Reference, a crowd-powered system that reconstructs the 3D

location of a target object based on manual annotations of the target and reference

objects. To demonstrate the effectiveness of our approach, we recruited 339 crowd

workers from Amazon Mechanical Turk to annotate 15 realistic computer-generated

images of indoor and outdoor scenes. The end-to-end experimental results, from

annotation collection to 3D location estimation, show that our proposed approach

significantly reduces the average 3D location estimation error by 40% with only 35%

as much human time. This chapter makes the following contributions:

• We introduce a novel crowdsourcing approach that strategically elicits and lever-

ages the diverse knowledge of crowd workers to improve collective accuracy even

in settings where individuals do not have full knowledge of the task.

• We present a characterization study to demonstrate the effectiveness of our

proposed approach via a controlled experiment with a large synthetic dataset.

• We create C-Reference, a system that implements our proposed multi-object

87

aggregation method to more accurately reconstruct 3D scenes from 2D images.

• We report experimental results from a study using C-Reference that demon-

strates our proposed approach can more efficiently and accurately estimate the

3D location of a target object compared to using single-object annotations.

5.2 Evaluation Method

To add clarity for the remainder of the chapter, we begin by describing the dataset

that we use for all of our empirical results, as well as our metrics of success.

5.2.1 Dataset

To evaluate our approach, we need a 2D image dataset with corresponding 3D

ground truth answers. Existing datasets can be noisy due to the range-fidelity of

LiDAR sensors and the errors made during the manual annotation of 3D bounding

boxes around point cloud objects (Chen et al., 2014). To avoid these errors, we

synthesize a 3D dataset using the Unity 3D game engine (example in Figure 5.2(a)).

The image resolution was 2880 × 1800 pixels. For each image, we select one target

object at random to be estimated. To demonstrate the robustness of our approach, we

include objects that are small, heavily occluded (more than 50%), or have a limited

view angle from the camera’s perspective. Next, we arbitrarily choose five reference

objects for each test image. We assume that no information is known a priori about

these reference objects.

5.2.2 Metrics

To assess the quality of the intermediate and final output of our system, we use

percent error to represent deviation from the ground truth value. If the output is a

range, we also measure precision.

88

Percent Error

If the output is a scalar value, we compute the percent error as follows:

errs =
|m̃−GT|

GT
× 100 (Eq. 1)

where m̃ is the estimate value, GT is the ground truth, and | · | is absolute value.

When the output value is a range with scalar valued bounds, we use a slightly

modified formulation as follows:

err =
|(m̃L + m̃U)/2−GT|

GT
× 100 (Eq. 2)

where m̃L is the lower bound of the output range and m̃U is the upper bound of it,

which measures the percent error.

If the output is a vector value, we compute the percent error as follows:

errv =
||m̄−GT||2
||GT||2

× 100 (Eq. 3)

where m̄ denotes the estimated 3D location vector, GT denotes the ground truth 3D

location vector, and || · ||2 denotes Euclidean distance.

Precision

When the output is in a range, the precision of the range is computed as follows:

precision =
(m̃L − m̃U)

(m̃L + m̃U)/2
× 100 (Eq. 4)

where m̃L and m̃U are the lower and upper bounds of the range, respectively. Note

that for both percent error and precision, lower value means better performance.

89

Figure 5.2: A test image with known ground truth of objects. Inside the white bound-
ing box is the target object (a cupboard) to be estimated. The three
colored lines on the object represent the ground truth dimension lines,
length (L), width (W), and height (H). Green lines (1 , 2 , and 3) are
the reference object annotations.

5.3 C-Reference: Joint Object 3D Location Estimation

In this section, we introduce our proposed joint object estimation system, C-

Reference, which estimates the 3D location of a target object using diverse sets of

2D annotations. Our approach transforms the approximate size or distance mea-

surement annotations of multiple in-scene objects to soft constraints that are then

used by an optimizer, making any level of measurement granularity useful. This en-

ables C-Reference to leverage answers from workers with diverse levels of knowledge,

collectively generating accurate system output.

5.3.1 Iterative Optimize to Estimate the 3D Location of a Target Object

For the 3D location estimation, we build upon the method from Popup (Song et al.,

2019b), which estimates the 3D state of a target object using the three “dimension

line” (length, width, and height of an object) annotations drawn on 2D images.

Dimension lines provide richer information compared to other annotation methods.

Specifically, they can be used to determine both the 3D location and orientation

90

information of an object, while keypoint annotation (Szeto and Corso, 2017) can

only provide orientation information, and 2D bounding boxes (Geiger et al., 2011)

can only provide location information.

The three dimension lines, as shown inside the white box in Figure 5.2, create

four corners (c1, c2, c3, and c4) that enable to concretize the problem of 3D location

estimation to a perspective-n-point problem (Fischler and Bolles , 1981; Lepetit et al.,

2009), where the intrinsic camera parameters are unknown and the manual annota-

tions are noisy. Since we use the same scenario as in Popup (Song et al., 2019b), the

true size measurement of the target object, i.e., the actual 3D distance between the

four corners, is assumed to be known.

Designing the Cost Function

We estimate five unknown variables, x, y, z, θ, and f , using the four corners of

dimension line annotations of a target object, where x, y, z are the 3D location of

the target object, θ is the yaw orientation of the object, and f is the camera’s focal

length. The corners are input to an iterative optimizer, which we implemented based

on the L-BFGS-B algorithm (Zhu et al., 1997; Song et al., 2019b). We applied a

basin-hopping technique to iterate multiple times with random initialization, only

accepting a new solution when its cost is minimum among all the candidate solutions

visited during the iteration. The objective function is designed as follows:

cost =
4∑

i=1

(
− logNormal(||ti − Cf (xs)i||2, 0, σ) +

∣∣||ti||2 − ||Cf (xs)i||2
∣∣) (Eq. 5)

where the optimizer finds s̄ = argmin
{s∈S,f}

(cost). Here, s̄ denotes the estimated 3D loca-

tion, S denotes all valid state candidates, ti denotes one of the four corners from a set

of dimension lines, logNormal(·, 0, σ) denotes log-normal distribution with standard

deviation σ, Cf (·) denotes the camera projection matrix, and xs denotes the current

91

state of the virtual 3D bounding box of the target object. Lastly, || · ||2 denotes the

Euclidean distance and | · | denotes absolute value. Note that we did not use the

particle filter-based method proposed in Popup (Song et al., 2019b) because it is not

applicable to static images.

Limitations

While the optimizer is designed to find the minimum cost of the objective func-

tion, there are a few factors that can cause poor estimation results. First, annotation

noise in the dimension lines can affect the estimation result. Even a small discrepancy

(e.g., smaller than five-pixel error in 2D) in annotation accuracy can lead to a signifi-

cantly amplified error (e.g., larger than 20-meter error in 3D) in the estimation result

depending on the camera parameters (Song et al., 2019b). Unfortunately, collecting

super-precise visual annotations on 2D images is challenging because of the factors

such as limited human motor precision, limited pixel resolution, and limited human

visual perception to precisely perceive scenes. Second, while the optimizer can find

the global optimum in cases where input annotations have zero noise and the initial

values are set at the global optimum, in other cases it fails to find the global optimum,

instead finding local optima as a solution, making the performance highly dependent

on the initial values chosen. To resolve the local minimum problem, more information

such as additional constraints for the search area can be added to the optimization

process to help avoid searching near infeasible solutions. In the next section, we in-

troduce a novel annotation aggregation approach that helps the optimizer overcome

these limitations by generating additional soft constraints from even rough and less

precise annotations.

92

5.3.2 Joint Object Annotation Aggregation

To achieve better estimations that overcome limitations from pixels and local

optimum, we introduce an approach that guides to better search area using soft con-

straints that are generated from diverse crowd annotations on multiple objects. The

key insight is that having multiple objects as an option will allow crowd workers to

use their diverse knowledge of familiar objects, not having to rely on a single source

of information when annotating. To combine the heterogeneous annotations from

different objects, we first introduce a penalty function that is generated by merg-

ing multiple soft constraints. The advantage of converting the annotations into soft

constraints is that the accuracy requirement for usable annotations can be relaxed, al-

lowing even rough approximate annotations to contribute to the system performance.

Next, we introduce an aggregation method that uses the shared spatial relationship

among the objects to unify and transform the annotations into useful input for the

penalty function.

Designing a Penalty Function

We introduce a penalty function that creates a soft constraint for the optimizer

using approximate search bounds. The soft constraints penalize the optimizer for

selecting an infeasible solution and encourage finding a better solution near the ground

truth. We design a penalty function based on a weighted sigmoid function which

penalizes x if x is below l or above u as follows:

P (x) = S(l − x) + S(x− u) (Eq. 6)

where S(x) is the weighted sigmoid function with a weight x+ 1,

S(x) = max

(
x+ 1

(1 + e−ax)
,M

)
(Eq. 7)

93

and l is a lower bound, u is an upper bound, a is the sharpness parameter, and M is

a threshold to prevent the penalty function dominating the objective function. While

the two parameters a and M can be arbitrarily tuned, the additional information of

l and u is best chosen to be near the ground truth so that the penalty function can

narrow down the search area for the optimizer. In the next section, we design a joint

object annotation aggregation method, which aggregates approximate annotations

from diverse different reference objects—the rest of the in-scene objects besides the

target object to be estimated—to obtain reasonable values for both l and u.

Annotation Aggregation Method

The proposed aggregation approach uses (i) a measurement value of a line in an

image and (ii) the 2D annotation of the line marked on the image as input. The

method utilizes the spatial relationships between the reference objects, the target

object, and the ground plane they are on, to transform the 3D properties of the

reference objects into useful information for the optimizer. We assume that both

the reference objects and target object share the same ground plane and vanishing

points. This setting enables to make use of the 3D affine measurements even with

single perspective view of a 2D scene, given only minimal geometric information (e.g.,

vanishing points and horizontal line) from the image (Criminisi et al., 2000).

Our goal with joint object annotation aggregation is to approximate the position

of the target object relative to the camera position. Specifically, we seek how far

the target object is from the camera in the vertical and horizontal direction that the

camera is looking at, which are denoted as vd and hd, respectively. To obtain these

values, we use the following four pieces of information: (i) the center of the target

object’s bottom, which is computed from the target object dimension lines, (ii) a line

on two reference objects each, which represents the length, width, or the distance

from the camera, (iii) the approximate estimate of the lines’ actual measurements,

94

(a) Aggregation Step 1: decompose annotation lines into vertical (along the
vanishing point) and horizontal (parallel to the horizon) components.

(b) Aggregation Step 2: find the four points along the vertical line from camera
center to a vanishing point to conduct the cross-ratio based computation, as in
1 and 2 .

(c) Aggregation Step 3: use the cross-ratio based computations (1 and 2 in
(b)) to map the components’ 3D length with the crowd workers’ measurement
estimation annotations.

Figure 5.3: Step-by-step aggregation of reference object annotations using cross-ratio
and vanishing points.

95

and (iv) the horizontal line obtained from the vanishing points. The horizontal line

could be estimated using off-the-shelf computer vision algorithms (Denis et al., 2008;

Tardif , 2009) or it could be obtained manually.

Figure 5.3 shows an example of how we compute the approximate distance of

a target object. For the length, width, or distance line of a reference object, we

first decomposed them into vertical and horizontal components as in Figure 5.3(a).

Decomposition also disentangles the complex relation between horizontal and vertical

components as they have different projection characteristics. After decomposition, for

each component, we calculate the length ratio between the target object distance and

each reference object’s line. The length of each component is denoted by multiplying

the ratio and the unit lengths (V and H) for the vertical component and horizontal

component, respectively. Using the length ratio, we can set the following equation

with one reference object line annotation:

(dtarget)
2 = (aH)2 + (αV)2 (Eq. 8)

(lreference)
2 = (bH)2 + (βV)2 (Eq. 9)

where dtarget is the target object’s distance from the camera, lref is the length of the

reference object annotation line, a and b are constants calculated from the ratio of the

horizontal component length, and α and β are constants calculated from the ratio of

the vertical component length. V and H are unit lengths for vertical and horizontal

components. Here, dtarget, V , and H are the three unknown variables. With two

reference object annotations, we can come up with one equation for the target object

(Eq. Eq. 8) and two equations for reference annotations (Eq. Eq. 9), which share

three unknown variables and can solve the equation problem for these variables.

To obtain the ratio of vertical components between two lines, we used cross-ratio,

which is a ratio relationship between four points on the same straight line as in

96

Figure 5.4: Overview of the pipeline of our prototype application, C-Reference, which
estimates the 3D location of a target object using a novel joint object
estimation approach. The additional information from the joint object
annotations (1) is aggregated (2) and transformed into a soft penalty
function (3), allowing diverse granularity of approximate annotations to
contribute to improving the system performance.

Figure 5.3(b). Because cross-ratio has a projective invariant property, where the

ratio in projected pixels and lengths in the 3D space are the same, we can use it to

compute the length ratio of lines in the 3D space.

For the ratio of horizontal components between two lines, we first translate the

decomposed horizontal component so that they can be on the same straight line

parallel to the horizon as in Figure 5.3(c). The reason for this is that horizontal

components can be compared as the 3D length only when they are at the same vertical

distance from the camera. After the translation, we compute the length ratio of the

two horizontal components with the ratio of the pixel length. When the annotations

are poor with large noise, the system of equations will have no solutions, which can

be used to filter out cases with no solution from being input to the penalty function.

5.3.3 System Implementation

Based on the proposed joint object annotation aggregation method, we imple-

mented C-Reference, a crowd-powered 3D location estimation system that leverages

approximate annotations from the reference objects to more accurately estimate the

3D location of a target object. Figure 5.4 shows the system pipeline of C-Reference.

97

The penalty function we designed (Eq. 6) is integrated into the objective function

(Eq. 5) as follows:

cost′ = cost +
∑
i,j∈R

Pij(xs) (Eq. 10)

where cost is the objective function in Eq. 5, R is a set of reference object annotations,

Pij(xs) = S(dij,l − xs) + S(xs − dij,u) (Eq. 11)

where S(·) is the weighted sigmoid function described in Eq. 7, dij is dtarget approxi-

mated from reference object annotations i and j. Finally, l and u are the lower and

upper bounds of the approximation of dij. Because the penalty function can accept

lower and upper bounds, it is possible to leverage the approximate measurement of

objects at any level of granularity from the annotators. Also, since our approach can

leverage any line drawn on the ground in the image, it can be mapped to various

different types of knowledge from crowd workers.

5.3.4 Controlled Study of Simulated Annotation Error

To systematically understand the performance of our approach, we conducted two

control studies with computer-generated virtual data points with absolute ground

truths. We first investigate the performance of module 3 in Figure 5.4 without

the additional information from the penalty function. Next, we investigate the per-

formance of our joint object aggregation method (module 2 in Figure 5.4) which

generates the input to the penalty function.

Performance of the Optimizer without the Penalty Function

We ran a controlled study with 748 virtual data points with varying annotation

noise on each data point. The amplitude of the noise varied from zero pixel to 25 pixels

in random direction, which we generated with five-pixel intervals. The annotation

98

(a) Using target object alone. (b) Using line 1 and 3. (c) Using line 1 and 2.

Figure 5.5: Results of the controlled studies. (a) Performance characterization of
the optimizer without our annotation-derived penalty function. The re-
sult shows the error characterization result of 748 data points where each
point was generated with zero to 25 pixels noise (five pixels interval) in
random direction for each corner, c1, c2, c3, and c4. Shaded area is the
interquartile range.The result shows that a noise floor of about 70% error
in 3D location estimation is generated even with zero pixel annotation
noise. This noise floor is reduced to zero when ground truth is set as ini-
tial values. (b) Performance characterization of our proposed joint object
annotation aggregation method. The aggregation result approximates
dtarget in Eq. 8. The result shows the average error of aggregating line
1 and line 3 in Figure 5.2. While the approximation error of dtarget

consistently increases according to both pixel and measurement noises,
the error can be reduced to zero if no noise is added to the annotations.
(c) The result shows the average error of aggregating line 1 and line 2
in Figure 5.2. Because the two parallel lines create a degenerate config-
uration with no unique solution, the approximation error becomes very
noisy. Shaded areas indicate the interquartile range.

noises were added to the corners of each dimension line of the target object, L, W,

and H in Figure 5.2. Then, each data point was input to the optimizer (Eq. 5) to

compute the 3D location estimation of the target object. The σ value was set as 100,

the basin-hopping iteration number as 10, optimizer stopping criteria as 1e-8, and

the optimizer bound as −10 ≤ x ≤ 10, −10 ≤ y ≤ 10, 1 ≤ z ≤ 100, −π ≤ θ < π, and

100 ≤ f ≤ 2000. After the estimation was finished, we computed the percent error

of the 3D location estimation of each data point as in Section 5.2 Eq. 3.

Figure 5.5(a) shows the controlled study result using the target object’s three

99

dimension lines to estimate the object’s 3D location. The result shows that there is

about 70% noise floor in 3D location estimation even when the annotation noise is zero

pixels. The average estimation error increased as the annotation noise increases. We

observed that the noise floor is affected by the initial values selected since we got zero

3D location error when the initial values were the ground truth. This may indicate

that the optimizer is converging to a local minimum, which depends on the randomly

selected initial values. Therefore, using an additional penalty function that penalizes

infeasible solutions would help avoid local minima and find a better solution (Smith

et al., 1997). In summary, this controlled study shows that the baseline optimization

is vulnerable to both annotation noise and the initial search area.

Performance of the Propose Joint Object Annotation Aggregation

The design of our penalty function and annotation aggregation algorithm is robust

to annotation noise because of two reasons; (i) the threshold parameter M in Eq.

7 prevents the penalty function from creating large basins that can dominate and

confuse the objective function, and (ii) the poor annotations can be automatically

filtered because the approximation value dtarget in Eq. 8 will have no solution when

the annotation pairs are low quality. The cases with no solution can be detected and

filtered as a post processing of the aggregation.

Beyond the mathematical observation, we ran a similar controlled study as in

Section 3.1.1 to better understand the performance of our proposed joint object an-

notation aggregation method. The ground truth lines in the unit of pixel and the

ground truth measurement of the ground truth lines were known. We generated 748

virtual data points with varying noise from zero to 30 pixels in random direction,

generated in 10 pixels interval. The image resolution was 2880 × 1800 pixels. The

noise was added to the target object dimension lines and three reference object anno-

tation lines, 1 , 2 , and 3 , as shown in Figure 5.2. We also added the measurement

100

noise to these lines, from 0 percent noise to 40 percent noise compared to the ground

truth, generated in 10 percent intervals.

Figure 5.5(b) and (c) show two example results from the controlled study. Fig-

ure 5.5(b) shows the average result using line 1 and line 3 in Figure 5.2 to approx-

imate dtarget value. It is observed that the approximation error increases according to

both the pixel noise and the measurement noise. While the error characterization of

the optimizer from Figure 5.5(a) shows a noise floor of about 70% even with zero pixel

noise, our joint object annotation aggregation method shows that the noise floor can

be reduced to zero if there is zero noise in the reference object annotations. Even with

40% measurement noise and 30 pixel annotation line noise, the error in approximat-

ing dtarget was below 30% on average. Figure 5.5(c) shows the average result using

line 1 and line 2 in Figure 5.2 to approximate dtarget value. A characteristic of

these two lines is that they are parallel in 3D. These parallel lines create degenerated

configuration for the system of equations, resulting in no unique solutions to output.

Even though there should not be a unique solution, the synthesized noises added to

these lines create large errors due to the lines intersecting at some point where the

distance to the intersection could be very large due to the lines being near parallel.

Our controlled study demonstrates how the joint object annotation aggregation

method fails to provide feasible penalization to the optimizer when the line pairs

are parallel. However, the impact of these parallel lines can be minimized as more

reference object annotation lines are combined, because the design of the penalty

function (Eq. 11) makes the effect of these outliers negligible.

5.4 Eliciting Measurement Estimates

With our joint object estimation method in mind, we implemented a web interface

that elicits measurement estimates from the the crowd (Figure 5.6). The interface also

asks the annotators to mark the corresponding length lines on the reference objects,

101

Figure 5.6: The interactive worker UI is comprised of three steps in which workers
approximate object measurements and annotate dimension lines. (a) The
instructions and task image step: the reference object to be annotated
is marked with a green box. If the relative condition is assigned, the
UI also provides an indication of the target object (red box). (b) The
measurement-approximation step: each worker sees different instructions
based on the condition they are assigned. (c) Length line annotation
step: crowd workers were instructed to draw the line that represents the
measurement they provided in the second step.

as shown in Figure 5.6(c). We explore diverse types of measurement estimates to

understand tradeoffs in crowd worker performance (accuracy and precision) when

generating different measurement estimates.

5.4.1 Types of Measurement Estimate Annotation

Providing various options to annotate measurement estimations helps facilitate

the use of varied knowledge from crowd workers. While measurement estimates of

reference objects can be asked and can be answered in various forms, we explored three

different dimensions in designing the type for the measurement estimates: selection

(length of an object, width of an object, or distance of an object from the camera),

102

directness (direct measurement or relative measurement compared to another object),

and granularity (single valued answer or range valued answer). These types are

orthogonal and thus can be combined (e.g., annotating the length of an object via a

range that is relative to a different object’s length).

Selection of Measures

While our annotation aggregation method can make use of any line drawn on

the ground and its corresponding actual measurement value, it is hard for humans

to estimate the actual measurement value of a line if there is no visual reference.

Therefore, we asked workers to annotate lines that have visual object reference points

in the scene. The length and width of objects can be estimated based on prior

exposure to and knowledge about everyday objects, e.g., the length of a table is

usually greater than that of a chair. We did not include height measurements of

objects since they cannot be drawn on the ground. The object’s distance from the

camera can be inferred based on the scene in a given image, e.g., if there are three

cars in a row, one can tell approximately how far the last car is from the camera.

Example measurement estimates are:

• Length: “The object is about 165 inches long.”

• Width: “The object is about 50 inches wide.”

• Distance: “The object is about 35 feet away.”

Note that because the camera location is not visible from the image, instead we

designed the interface to ask crowd workers to consider the distance “from the bottom

of the image”. In the instructions, we provided example gif images that demonstrate

how to draw length lines to help the workers understand the task.

103

Directness of Measures

Depending on the context, sometimes it can be easier to estimate a relative mea-

surement than the direct measurement of an object. This is especially true when the

object is not familiar to the annotator, because people naturally use prior knowledge

of other objects to infer the properties of a new object (Sternberg and Sternberg , 2016;

Heit , 1994). Therefore, we implemented not only an interface to input direct mea-

surements, but also the relative measurements of objects. However, if we let crowd

workers make the inference based on any object in the task image, it becomes hard

for the computer to aggregate the annotations, because the computer does not know

the true measurements of the other objects. Therefore, we restricted this comparison

to be performed only with the target object to be reconstructed, which we already

know the exact true size of. Example measurement estimates are:

• Direct: “The object’s length is about 80 inches.”

• Relative: “The object is about 10% longer than the target object.”

Granularity of Measures

Unless the annotator knows the exact make and model of an object, it is infeasible

to precisely identify the length or width of it. Similarly, for the distance measure-

ment, it is hard to tell the exact distance of an object from a single image. Therefore,

we designed two elicitation approaches; a single valued estimate, and a ranged valued

estimate. For the range valued approach, the annotators can freely choose the gran-

ularity of their answer. Our proposed joint object annotation aggregation method

can handle multiple granularities because the penalty function (Eq. 6) is designed to

accept lower and upper bounds. Example measurement estimates are:

• Single: “The target is about 32 feet away.”

• Ranged: “The target object is about 30 feet to 40 feet away.”

104

We note that even though there are 12 total measurement estimation types that

could be tested (3 selection× 2 directness× 2 granularity), we only use 10 types

when investigating crowd workers’ accuracy in estimating measurements. This is be-

cause the combination of two relative distance annotations cannot be computed with

our joint object aggregation method. Therefore, we excluded the two combinations

distance×relative×single and distance×relative×ranged from both the interface

design and the data collection.

5.4.2 Task Interface

Our task interface presents crowd workers with step-by-step instructions and web

annotation tools. After reading through the instructions, crowd workers can click a

button to proceed to the task. Then they are shown an image with reference objects

to be annotated, which are indicated with a green box. For the relative condition, the

target object to be compared is also indicated with a red box. After checking the task

image, the next step is to provide estimated measurement values, as in Figure 5.6(b).

The workers are allowed to choose a unit of measurement from the following four

options: meter, feet, inch, and yard. The last step is to mark the corresponding line

on the selected reference object, as in Figure 5.6(c). Since the length and width of

an object can be ambiguous in certain cases, e.g., when an object has no apparent

longer side, we set a rule in distinguishing length and width. The rule is explained

in the instructions with various example objects as in Figure 5.6(b). For distance

estimate annotation, this instruction was hidden. The instructions in Step 2 included

examples of corresponding lines, and we reminded workers that the line should be

drawn on the ground in the image where the objects are positioned.

105

(a) Different selection (b) Different directness (c) Different granularity

Figure 5.7: Cumulative frequency of annotations is plotted with respect to the percent
error of the annotation. No significant difference was observed within each
dimension.

length width distance
direct × single 61.98/120.43(180.05) 60.65/64.21(57.77) 51.02/60.09(61.84)
direct × range 67.31/167.56(270.63) 61.94/184.46(698.51) 49.88/55.15(49.19)
relative × singe 65.24/238.02(658.27) 65.02/109.38(151.22) -
relative × range 58.51/291.16(1209.50) 68.01/104.58(129.45) -

Table 5.1: Median/Average(Standard Deviation) percent error computed as in Eq. 1
and Eq. 2 to evaluate worker answers for different measure estimate types.

5.4.3 Evaluating the Impact of Measure Type

To evaluate the impact of measurement type on workers’ annotation accuracy,

we recruited 300 crowd workers. We asked the workers to annotate the 15 task

images, 10 indoor and five outdoor images, using the 10 different measurement types.

Images were grouped into fives to distinguish indoor and outdoor images. The order

of the images within a group and the objects within an image were randomized to

avoid learning effects. Each worker annotated one object per image using a single

measurement type that was provided. Participants were limited to workers from the

US who had a task acceptance rate ≥95%. Each worker could only participate once,

and was paid $1.35 per task, yielding an average wage of $9/hour—above the 2019

U.S. federal minimum wage.

106

length width distance
direct × range 25.00/28.98(17.32) 28.57/31.09(21.48) 28.57/36.66(24.08)
relative × range 18.18/25.82(27.38) 22.22/30.62(29.64) -

Table 5.2: Median/Average(Standard Deviation) precision computed as in Eq. 4 to
evaluate worker answers for different measure estimate types.

5.4.4 Results

A total of 1500 annotations were collected across the 10 types, but 18 annotations

had to be dropped because the submission was incomplete. We ended up with a total

of 1482 annotations. Figure 5.7 shows the cumulative frequency of the percent error

for each element within each dimension. The trend is similar across types: a steep

increase until 100 percent error, and then slows down the speed of increasing.

The median and average percent error of crowd workers’ responses for the 10

measurement types are shown in Table 5.1. To compare the performance of the

10 measurement types, we ran
(
10
2

)
= 45 (10 choose 2) pairwise comparisons using a

Mann-Whitney U test because the worker responses were skewed (non-normal). With

Bonferroni correction, we considered the comparison result significantly different if

the p-value was below .05/45 = .0011. From the 45 comparisons, the pairs with

significant difference were the following four:

• distance× direct× range outperformed length× direct× range

(U = 8554.0, n1 = 150, n2 = 150, and p < .0005)

• distance× direct× single outperformed length× direct× range

(U = 8658.0, n1 = 150, n2 = 150, and p < .0005)

• distance× direct× range outperformed width× relative× range

(U = 8658.0, n1 = 150, n2 = 149, and p < .001)

• distance× direct× single outperformed width× relative× single

(U = 8658.0, n1 = 150, n2 = 145, and p < .0001)

107

The result shows that the overall crowd worker performance was similar across

different types, but direct distance estimation types significantly outperformed some

of the other types.

The median and average precision of crowd workers’ responses for the five measure-

ment types are shown in Table 5.2. All single types were ignored because precision

is always 0 for a single value. To compare the performance of the five measurement

types, we ran
(
5
2

)
= 10 (5 choose 2) pairwise comparisons using a Mann-Whitney U

test because the worker responses were skewed (non-normal). With Bonferroni cor-

rection, we considered the comparison result significantly different if the p-value was

below .05/10 = .005. From the 10 comparisons, the pairs with significant difference

were the following five:

• length× relative× range outperformed length× direct× range

(U = 8296.5, n1 = 150, n2 = 150, and p < .0001)

• length× direct× range outperformed distance× direct× range

(U = 9007.0, n1 = 150, n2 = 150, and p < .005)

• length× relative× range outperformed width× direct× range

(U = 8658.5, n1 = 150, n2 = 153, and p < .005)

• length× relative× range outperformed distance× direct× range

(U = 6562.0, n1 = 150, n2 = 150, and p < .0001)

• width× relative× range outperformed distance× direct× range

(U = 8399.5, n1 = 149, n2 = 150, and p < .0005)

The result shows that workers tend to provide a narrower range when asked to

annotate the relativemeasure. This might be because relative measurement is already

an approximation, giving workers fewer options to extend either the lower or the upper

bounds. We also report the task time difference in Table 5.3, which we did not find

108

length width distance
absolute × raw 47.31/67.24(68.02) 44.77/56.05(43.48) 36.36/46.77(33.76)
absolute × range 45.97/62.63(53.54) 50.95/67.78(49.17) 37.48/58.21(72.93)
relative × raw 39.25/54.31(40.28) 46.45/71.61(117.76) -
relative × range 53.78/85.37(139.65) 53.30/73.97(64.30) -

Table 5.3: Median/Average (Standard Deviation) task time for different measure es-
timate types.

significant across measurement types. Overall, the average accuracy and precision of

worker annotations was similar across different types, even though there were some

cases with significant performance differences. While images may contain various

different objects in varying context, providing the workers with as many types of

measurements as possible will allow to cover the diverse cases of use, maximizing the

benefit of knowledge diversity of workers.

5.5 System Evaluation

For the evaluation, we assumed that the target object’s dimension values (length,

width, and height) were known but were not mapped to the image, requiring dimen-

sion line annotations for the mapping, which is the same scenario as in (Song et al.,

2019b). We ran three analysis studies to investigate the performance of C-Reference:

(i) investigation on the effect of the number of additional reference object annotations

on the accuracy of 3D location estimation, (ii) investigation on the performance gain

compared to a baseline method that uses the same number of total annotations, but

only from the target object dimension line annotations, and (iii) investigation on the

performance of the penalty function. While the first study allows us to understand

the trade-off between the cost and performance of our approach, the second study

allows us to understand the significant benefits of using our proposed approach. The

last study allows us the understand the impact of the design of the penalty function

on the overall system performance.

109

5.5.1 Experimental Setup

We recruited 39 crowd workers to collect the target object annotation on the 15

task images. Each image contained one target object whose 3D location is to be

estimated. As mentioned in Section 5.2.1, we included challenging objects such as

occluded objects, limited view angle, or small objects to make the task more complex.

The image order was randomized the same way as in Section 5.4.3. A total of 13

annotations were collected for each target object. The workers were different from

participants in the reference object annotation round. The eligibility and reward

settings were the same as in Section 5.4.3. For reference object annotations, we used

the same set of annotations, which was collected in Section 5.

Analysis 1: Effect of the number of reference object annotations

To understand the effect of the number of additional reference object annotations,

we started from zero reference object annotations, only aggregating the target object

dimension line annotations. For target object dimension line annotations, five anno-

tations were randomly chosen from the 13 total annotations. To avoid selection bias,

we ran this 50 times, drawing a random group from a total of
(
13
5

)
= 1287 (13 choose

5) possible cases each time. The median, average, and standard deviations of the per-

cent error of the 50 samples were computed for each target object. When combining

multiple target object dimension lines, we tested both taking the average and taking

the median. We used the median throughout the study because the performance of

taking the median was better due to being able to remove the effect of outliers.

For reference object annotations, we randomly selected one annotation from each

reference object, and combined the selected annotations using our joint object anno-

tation aggregation technique. We increased the number of reference objects from two

to five as shown in Figure 5.8. We skipped one annotation because our aggregation

method only works for more than two reference annotations. Whenever selecting a

110

(a) 36% error reduction (b) 39% error reduction (c) 13% error reduction

Figure 5.8: Percent error comparison of the different number of reference object an-
notations that are aggregated. Adding more reference object annotations
decreased the percent errors increasingly. (a) shows the result of all 15
images. There was maximum error reduction of 36% from adding four
reference object annotations, compared to adding no reference object an-
notations. (b) shows the results of all 10 indoor images. There was a
maximum error reduction of 39% when adding four reference object an-
notations. (c) shows the results of all five indoor images. Maximum error
reduction was 13% when four annotations were combined. More gain was
observed with indoor images.

new annotation, we selected it from an entire pool of the 10 measurement types.

The reason for this was to collect diverse combinations of the types, and investigate

the effect of the combination of types on the final 3D location estimation accuracy.

We ran this 50 times, the same as the target object annotations, drawing a random

annotation from a total of
(
20
1

)
= 20 (20 choose 1) possible cases for each object at

each time.

Analysis 2: Performance comparison with a baseline.

To investigate the benefit of using reference object annotations, we set the number

of total annotations to 10 and compare C-Reference with a baseline as follows:

• Baseline (10 target object dimension line annotations): estimates a target ob-

ject’s 3D location without using reference object annotations, only using the

target object’s dimension line annotations. Ten target object dimension line

annotations were randomly chosen from the 13 total annotations, a total of

111

50 times—drawing a random group from a total of
(
13
10

)
= 286 possible cases

each time. Same as in Results Analysis 1, we used the median when combining

multiple target annotation dimension lines to avoid the effect of outliers.

• C-Reference (five target object dimension line annotations and five reference

object annotations): estimates a target object’s 3D location using both target

object annotations and reference object annotations. For target object dimen-

sion line annotations, we randomly chose five from the 13 total annotations, a

total of 50 times—drawing a random group from a total of
(
13
5

)
= 1287 possible

cases each time. Same as in Baseline, we used the median when combining

multiple target annotation dimension lines. For reference object annotations,

we randomly sampled five annotations with the same drawing scheme we used

in Results Analysis 1.

For the performance evaluation of the 3D location estimation for both conditions,

we used the percent error as in Eq. 1. The average, median, and standard deviations

were computed.

Analysis 3: Handling reference object annotations with large noise.

To understand the performance of the penalty function, we conducted an in-depth

analysis of C-Reference’s output from Results Analysis 1. The goal is to determine

whether the penalty function was able to automatically handle poor quality annota-

tions. We used the estimation results from aggregating two reference object annota-

tions and divided the results into two groups. One group had no input value for the

penalty function, because no single pair of reference object annotations generated a

valid dtarget value (there was no solution to the corresponding system of equations).

The second group had a value for the penalty function. We call these groups skipped

and non-skipped, respectively. The skipped condition can be thought of as the penalty

function being turned off, because there is no input or output from the function.

112

Figure 5.9: Performance comparison between skipped and non-skipped groups when
two reference object annotations are aggregated. Here, we further divided
the groups into six aggregation pairs. The average percent error of the
non-skipped group was always lower than the skipped group, indicating
the penalty function is beneficial.

5.5.2 Parameter Settings

For the experiment, we used the same optimization function as in Eq. 10 for the

baseline. For the C-Reference method, we added the penalty function in Eq. 6 to the

objective function in Eq. 10. We set σ to 100, and the basin-hopping iteration number

as 200. We picked a large number of iterations to improve the overall performance

for every condition including the baseline. The optimizer stopping criterion was set

as 1e-8, L-BFGS-B bound as −10 ≤ x ≤ 10, −5 ≤ y ≤ 5, 1 ≤ z ≤ 50, −π ≤ θ < π,

and 100 ≤ f ≤ 3000. The two parameters for the penalty function were set as a = 8

and b = 50. Lastly, we manually obtained the horizontal line using parallel lines on

the ground plane.

5.5.3 Results

In this section, we investigate the performance of C-Reference, which implements

our proposed joint-object aggregation method to elicit and leverage the knowledge

diversity of crowd workers. We report the results of the three analysis studies below.

113

Analysis 1: Adding more reference annotations consistently improved per-

formance until hitting a saturation point.

As shown in Figure 5.8, the percent error of the 3D location estimation of the tar-

get object consistently decreased as more reference annotations were added. Across

all 15 target objects, the maximum improvement was obtained when four reference

annotations were aggregated, which was the saturation point. To compare the per-

formance of zero reference annotations with four reference annotations, we used a

Mann-Whitney U test pairwise comparison because both of the results were skewed

(non-normal). The result showed that there was a 36% performance improvement

from four added annotations, which was significant improvement (U = 209955.0,

n1 = 750, n2 = 750, and p < .0001). To understand the performance better, we

separated images to indoor and outdoor images and computed the percent error of

3D location estimation of the target objects. While indoor images had a 39% error

reduction, outdoor images only had a 13% error reduction. The average percent error

of indoor and outdoor images at four reference annotations was 139.97% and 54.57%,

respectively. The average ground truth distance of target objects in indoor images

was 4.95 meters, and in outdoor images it was 29.29 meters, which indicates that the

long ground truth distance may have reduced both the percent error of estimation

results and the performance gain from adding reference annotations.

Analysis 2: C-Reference not only significantly outperformed the accuracy

but also required less annotation time compared to the baseline.

We compared the performance of C-Reference with the baseline to understand the

effect when the number of total annotations is the same for the two conditions. We

used a Mann-Whitney U test pairwise comparison because both of the results were

skewed (non-normal). The result showed that there was a significant 40.4% perfor-

mance improvement from four added annotations (U = 201574.0, n1 = 750, n2 = 750,

114

and p < .0001). While C-Reference consistently improved the performance as more

annotations were added, the baseline did not improve the performance according to

the added dimension line annotations on the target object. We also computed the

average task time for both annotation tasks: target object annotation and reference

object annotation. The average task time for target object annotation was 183.5

seconds, while that for reference object annotation was 64.4 seconds, which is 35%

as much task time compared to target object annotation. Therefore, collecting more

reference object annotations instead of more target object annotations could save on

average 65% time per added annotation.

Analysis 3: Penalty function was effective in penalizing infeasible solutions,

and was robust to noisy input annotations.

We analyzed the penalty function performance by comparing the 3D location

estimation result of the two groups: the skipped annotation group and the non-skipped

annotation group. Then we further divided the estimation results into six subgroups

based on the selection pairs to investigate if the observed pattern is consistent across

aggregation pairs. As shown in Figure 5.9, we observed that the non-skipped group

always performed better than the skipped group regardless of the selection pair. That

is, when the penalty function is turned off (the skipped group), the performance is

worse for any selection pair. This result along with the results from Results Analysis 2

demonstrate the benefit of our proposed joint object annotation aggregation approach

in improving the performance of 3D location estimation. Because the penalty function

could identify that the system of equations has no solution for a given annotation

pair, we could put them into the skipped group. Another strategy that can be used

in future work may be collecting additional annotations until the set of annotations

becomes non-skipped. This may only aggregate and input high quality annotations

to the penalty function, while still leaving the poor ones as skipped.

115

5.6 Discussion

Our study and analysis showed that crowd worker approximations can improve

system performance when aggregated and transformed into a soft constraint for an

optimizer. The experimental results using C-Reference demonstrate that our pro-

posed annotation aggregation method can effectively create soft constraints from an-

notations on multiple different in-scene objects. In this section, we discuss 1) the

generalizability of introducing soft constraints as a way to leverage approximate in-

put from the crowd, and 2) the potential benefits of combining machine optimization

with crowd-generated constraints to create the synergistic effect of performance im-

provement.

5.6.1 Generalizability of Soft Constraints in Crowdsourcing

As an aggregation technique, we introduced the approach of turning a range or

single-valued estimations into a soft constraint with weighted sigmoid functions. Un-

like conventional voting aggregation, which requires the majority of people to agree

on one value, or averaging, which assumes that one error offsets the other, the soft

constraint allows us to aggregate crowd answers with a more flexible assumption on

the patterns of noises. For example, in our system, we could not assume a specific

error pattern because crowd workers will have different knowledge and generate dif-

ferent errors. Thus, conventional aggregation approaches that assume specific error

patterns would work for our problem. However, we could leverage our approach of

combining soft constraint and optimization within our problem as it is more flexible

to diverse error patterns.

An alternative to generating soft constraints based on workers’ direct approx-

imates could be combining the soft constraints with other answer elicitation ap-

proaches such as confidence rating (Oyama et al., 2013a,b). For instance, if a worker

estimates a value with high confidence, we can transform this into the soft constraint

116

with a small range with the center value being the estimated value. On the other

hand, if the worker estimates a value with low confidence, we can turn it into a soft

constraint with a wider range. As we applied maximum penalty function to prevent

overshooting penalty with wrong estimations, we would also be able to apply such

techniques to generate soft constraints with confidence. One design decision that

should be made for turning confidence into soft constraints would be how to model

the mapping between confidence and range.

5.6.2 Combining Machine Optimization and Crowd-generated Constraints

The approach of reinforcing machine optimization with crowd inputs is applicable

to a set of tasks with a certain assumption. The machine should be able to conduct

the search process of the optimization, as crowd inputs would only add information

regarding which part of the state space is worth searching. For example, if the machine

runs optimization for user intent recognition, it would be challenging to be aware of

all possible search spaces (e.g., all possible human intention). This would make the

machine’s optimization process inefficient. For such optimization tasks, crowd workers

would be leveraged in ways, such as expanding the search space to the extent that

machines cannot know yet. The synergistic combination of machine optimization

with crowd-generated constraints would be more valuable for cases where there are

multiple unknown correlated variables that need to be estimated. If there is only one

variable to be found, deterministic approaches such as averaging or voting would be

sufficient based on the detection of the error patterns.

5.7 Summary

Converting widely-available 2D images and videos to 3D can help accelerate the

training of machine learning systems in spatial reasoning domains ranging from in-

home assistive robots to augmented reality and autonomous vehicles. While automat-

117

ing this task is challenging because it requires not only estimating object location and

orientation, but also latent camera properties, leveraging people’s spatial understand-

ing of scenes by crowdsourcing visual annotations of 3D object properties can help

the conversion process in a scalable way. Unfortunately, getting people to directly

estimate 3D properties reliably is difficult due to the limitations of human motor

accuracy, selectable pixels (resolution), and people’s ability to perceive 3D precisely

(i.e., humans do not “see” depth like a laser scanner). In this chapter, we propose

a crowdsourcing approach that uses multiple objects and annotation granularities to

help jointly reconstruct the 3D state of a target object. Our proposed annotation

aggregation method transforms crowd workers’ approximations of objects’ size or dis-

tance into soft constraints for an optimizer by using the spatial relationship between

the objects. This relaxes the assumption that workers will each have similar levels

of knowledge or skill, helping more diverse answers to be used effectively. These soft

constraints help penalize infeasible solutions, increasing the chance of an optimizer

finding a more accurate solution. We evaluate our joint object estimation approach

with 363 crowd workers and show that the proposed method can reduce errors in

a target object’s 3D location estimation by over 40%, while requiring only 35% as

much human time. Our work introduces a novel way to aggregate collective percep-

tion in settings where precise annotation is challenging, but approximate annotation

of multiple alternative elements with known relationships is feasible.

118

CHAPTER VI

Discussion and Future Directions

In this chapter, we discuss how the way that we approach input diversity in this

thesis is different from previous perspectives on leveraging responses from the crowd.

We then overview design considerations for systematically leveraging input diversity

and suggest a set of guidelines for future work that aims to apply our approaches

in new crowdsourcing tasks and systems. We also discuss potential ways for the

effectiveness of these approaches to be measured using concepts from information

theory. We use these ideas to generalize the findings and the describe limitations of

where input diversity approaches can be usefully applied. We hope that future work

can investigate more formal notions of when to leverage input diversity.

6.1 Aggregating Diverse Responses from the Crowd

Diversity is a property of the crowd that people have been interested in since the

idea of the Wisdom of Crowds was first articulated (Surowiecki , 2005). If contributors

make no errors, no aggregation or correction is needed. If the errors they make were

all identical, there would be no way to make the collective answer more accurate

using aggregation methods. However, in many tasks, including complex annotation

tasks, responses contain a level of error or imprecision, but the variation (diversity)

in errors means it is possible to aggregate responses such that the collective answer

119

Figure 6.1: In this thesis we showed that the benefit from leveraging diverse input
can be systematically achieved by designing the systems with the input
diversity in mind. We showed that by jointly designing the task division
step and the response aggregation step, we can achieve diverse responses
from the workers, which could be aggregated in a way to improve the final
output quality.

is more accurate potentially more so than any single constituent response. In some

cases, this even allows sufficiently large groups of contributors to solve problems even

experts cannot.

When aggregating responses, it would be ideal if the errors being aggregated were

uniformly distributed around the ground truth answer. Widely adopted aggregation

solutions such as averaging or majority voting assume uniform distribution of errors

in the input. Other weighted aggregation methods such as expectation maximiza-

tion (Dawid and Skene, 1979; Ipeirotis et al., 2010) assumes weighted errors around

the ground truth and assigns counter-weight to each response so that the result of the

weighting can be uniform distribution. However, this requires contributors to provide

many answers that can be compared to the group’s answers in order to determine

these weights. Alternative methods like Self-correcting Crowds (Lasecki and Bigham,

2012) could be viewed as asking crowd workers to correct a collective response them-

120

selves by adjusting their relative weight with a (live) view of the final outcome. This

thesis showed that it is possible to design effective aggregation methods for a broader

class of error patterns, and under more common crowdsourcing assumptions, by elic-

iting input diversity through the design of task, tools, and systems. This provides a

new perspective on solving challenging problems by eliciting diverse error patterns in

the collective responses, which can generate more accurate aggregated answers.

6.2 Designing Crowdsourcing Tasks with Diversity in Mind

The methods introduced in this thesis elicit crowd responses with diverse error

patterns through task and interface design, and aggregate them in a way that improves

the combined answer to be of higher quality than any individual response. This thesis

identified problems where the tasks induce error biases which poorly approximate the

ground truth answer. Then, we introduced task designs and aggregation methods

to overcome these error patterns. While we only demonstrated the effectiveness of

the approach in a specific set of problem domains, we believe that the concepts and

techniques can be applied to a broader set of problems. We suggest a set of task

properties that describe when we believe our proposed diversity-driven approaches

would be applicable:

(1) The task can be broken down into subtasks that are all connected in a way

that is useful during answer aggregation. For example, in the image segmentation

task introduced in Chapter 3, the same target object is shared across different tools.

The inter-frame aggregation technique introduced in Chapter 4 and the joint object

aggregation technique introduced in Chapter 5 used the temporal or spatial relation-

ships between images to aggregate annotations from heterogeneous input.

(2) The task is tractable enough for contributors to provide approximate answers,

but the responses are expected to be imprecise due to limitations such as a lack

of information, restricted human perception, or restricted human motor skills. For

121

Figure 6.2: We defined “systematic bias” as reliable but not valid responses to a sys-
tem as shown in the first target above. We claim that these systematic
biases could be intentionally induced through the task design, which could
lead to higher aggregate performance when combined appropriately. Re-
sponses that are not reliable but valid, or neither reliable nor valid (as
shown in the second and third targets, respectively) are not desired be-
cause the aggregation may not lead to improved accuracy. Further dis-
cussion on the limitations of input diversity approach will be introduced
in Section 6.4.

instance, the image annotation tasks introduced in this thesis are tractable enough

to roughly mark the target object’s boundary, but being pixel-level precise is very

challenging and time consuming.

(3) The expected error patterns of the subtasks should be reliable even if they

are biased. From systems engineering, reliability and validity are two properties of

responses that describe the quality of the responses. Reliability denotes the extent

to which the responses can be reproduced, and validity denotes the extent to which

the aggregated responses represent the ground truth. As shown in the first target in

Figure 6.2, when the responses are reliable but biased (not valid), the input diversity

approach can be effective in producing better aggregate performance than any homo-

geneous type of input can do alone. If the input from each subtask is unreliable, a

small number of responses would not be able to approximate the ground truth when

aggregated. That means each subtask could generate reliable but biased error distri-

butions in different directions, which could be canceled out when aggregated. The

122

desired conditions for input diversity approaches could also be interpreted from an

information theory point of view, which will be discussed in the next section.

6.3 Joint Entropy and Mutual Information as a Means to

Interpret the Effect of Leveraging Input Diversity

In this section we use the notion of joint entropy and mutual information from

information theory to suggest an interpretation of why leveraging input diversity can

improve the aggregate answer accuracy.

When systematically eliciting biased errors through the design of a task, we can

consider each error source as a random variable created from the same input type.

For example, in Chapter 3, all responses from Tool A to the EM estimator can be

denoted as random variable X, while those from Tool B can be denoted as random

variable Y . If we denote the amount of information from X as H(X) and from Y as

H(Y), the joint entropy between the two variables can be denoted as H(X, Y).

The joint entropy provides an upper bound on the potential accuracy of the collec-

tive answer (or annotation). That is, the different error patterns across inputs should

actually contain diverse information rather than the same (repetitive) information.

This was discussed in Chapter 3 Figure 3.10 as well, where the tools with similar

error patterns did not show performance improvement when combined. Another fac-

tor that needs to be considered when designing systems to leverage input diversity

is the amount of mutual information across random variables. That is, if the mutual

information across random variables are small, it could imply that the aggregation of

the variables may not lead to the approximation of the ground truth to be estimated.

For example, in Chapter 3, if two image segmentations are from different objects

in different images, the segmentations would have zero mutual information, and the

aggregation of the two would be meaningless.

123

Combining the notion of both joint entropy and mutual information in input

diversity, we suggest the following formula as a primitive form of expressing the

amount of input diversity:

ID = argmax
{X,Y }

(
αH(X, Y) + βI(X;Y)

)
(Eq. 1)

where X and Y are random variables whose values are response outcomes from a

source, H(X, Y) indicates their joint entropy, I(X;Y) indicates the mutual informa-

tion between random variables X and Y . ID indicates the amount of input diversity

generated from X and Y . α and β represent the weight to each values. Interestingly,

a similar approach was introduced for feature selection in machine learning, where the

minimum redundancy maximum relevance (MRMR) framework enables to select fea-

tures that provide more balanced coverage of the space capturing broader attribute of

the dataset (Peng et al., 2005; Ding and Peng , 2005). While the equation we provide

is not a rigorous form with proofs, we believe that this approach, from an information

theoretic point of view, can provide a conceptual guidelines for future researchers and

practitioners in designing their systems to best leverage input diversity.

6.4 Limitations

As briefly mentioned in Section 6.2, input diversity may not always be a property

that is desirable for a system to leverage. As depicted in the last case in Figure 6.2, if a

system could be easily designed to elicit a single type of input responses that are both

reliable and valid, a simple averaging method would be enough to use. Therefore,

input diversity approaches may not be desired in these tasks. However, due to the

bias-variance trade-off (Hero et al., 1996), designing tools or interfaces with both low

bias and low variance could be a challenging problem itself. A better solution in

this case would be creating multiple high bias but low variance error clusters (input

124

types), and aggregating them to approximate the ground truth.

Another scenario is when it is possible to build a “zero error” tool or interface for

a task. Usually, if a task is simple and easy enough to respond the exactly correct

answer for anyone, it would not be desirable to complicate the design of a system by

eliciting input diversity. However, there is a tradeoff between the cost of designing

the “best” tool versus several imperefect ones. However, in general, the tasks that

would benefit most from leveraging input diversity are those that are complex enough

and hard for individuals to respond the correct answer by oneself.

6.5 Implications for the Future of Work

Humanity has evolved with the development of tools that allow us to automate

or augment human labors to accomplish things that were only imaginable before. In

its historical context, often times tools themselves shaped how we work and what

we work on, e.g., popularization of railroads in 1860s innovated people to consider

systematic management in everyday work, encouraging people to put emphasis on

efficiency (Yates , 1993). Recently, crowdsourcing marketplaces such as Amazon Me-

chanical Turk, Upwork, and Crowdflower started to serve as tools to extend paid

work into the online environment, enabling work in virtual or remote settings where

workforce is okay to be anonymous and not collocated (Kittur et al., 2013). The

Crowd Agent architecture (Lasecki , 2015) introduced a new viewpoint on how to

form and coordinate of groups in the context of continuous real-time crowdsourcing,

which opened possibilities in creating hybrid intelligence systems. Research on Learn-

ersourcing (Kim, 2015) introduced new ways to conduct large-scale data collection

tasks where the data is passively produced as a by-product of engaging in online

learning.

We believe that our work has important implications on how we think of re-

designing work beyond crowdsourcing domain, considering how we leverage the di-

125

verse potential input sources for better collective performance. As Page argued in

“Diversity Bonus (Page, 2008)”: workforce diversity is indispensable in the knowledge

economy to improve performance of organizations confronting complex challenges, ac-

knowledging diversity in workplace as a winning strategy (more than simply the right

thing to do for society to encourage inclusion) is an important step toward improving

the bottom line of performance in online, remote workplaces. This thesis provide

empirical evidences where

While we only explored three dimension of input diversity: tool diversity, perspec-

tive diversity, and knowledge diversity, there could be other dimensions of diversity

in work. We discuss future directions in exploring other dimensions and applications

in the next section.

6.6 Future Directions

We believe that this thesis has important implications beyond crowdsourcing, con-

cerning how we think about leveraging different dimensions of diversity in organizing

everyday work. The research and directions explored within this dissertation suggest

the following opportunities for future work.

6.6.1 Expanding Input Diversity Approach to Real-Time, Continuous, or

Interactive Crowdsourcing

The idea of eliciting and leveraging input diversity in crowdsourcing can be ex-

tended to real-time, continuous, or interactive crowdsourcing. The methods to elicit

diverse responses from the crowd can be designed in a parallel architecture because the

heterogeneous tasks are independent to each other. Therefore, these techniques can

be combined with existing real-time crowdsourcing techniques such as instantaneous

look ahead approach (Lundgard et al., 2018) or tagging 3D point cloud (Gourava-

jhala et al., 2018) to further improve the performance aggregate annotations. The

126

approaches we introduce can also be used in continuous crowdsourcing tasks (Chung

et al., 2019b) because leveraging diversity does not require maintaining the context.

Lastly, it can also be used in interactive crowdsourcing (Lasecki and Bigham, 2013)

where the system dynamically ask for the response that will reduce the systematic

bias when aggregated.

6.6.2 Expanding Input Diversity Approaches to Creative and Cognitively

Challenging Tasks

Future work may build on the proposed approach of leveraging input diversity to

explore the effectiveness in other crowdsourcing domains, such as feedback genera-

tion (Luther et al., 2014), labeling function generation (Ratner et al., 2017), creative

thinking tasks (Yu et al., 2016; Yu and Nickerson, 2011; Lee et al., 2018, 2019; Lee,

2018), and collective data exploration and discovery tasks (Jin et al., 2017). While

these tasks benefits from diverse responses and ideas from people, input diversity

may not come naturally from crowdsourcing, e.g., workers may lean toward similar

responses instead of being creative. Therefore, systematically eliciting diverse re-

sponses through task design would be required. For example, one can use priming

each sub-group of workers with different examples to elicit different responses. Then

an aggregation method that considers the different priming would be able to combine

the ideas knowing the source of difference between them. The knowledge diversity

approach we introduce in Chapter 5 may be a close example to this type of appli-

cations. As we induced each worker to focus on different objects in a scene for each

task, a similar workflow can be designed to make crowd workers focus an different

aspect of the task.

127

6.6.3 Expanding Input Diversity Approach to Include Minority Groups

in Workplaces

We envision input diversity approaches could serve as one means of improving the

inclusion of historically underrepresented groups, such as older adults and neurodi-

verse people, in workplaces. While our findings suggest that leveraging input diversity

can improve aggregate performance of the groups, the natural diverse perspectives

that these minorities can introduce to the workplace can serve as a valuable input

pattern in many situations. For example, at Hewlett Packard Enterprise, neurodi-

verse software testers brought new perspective to detect a failure pattern in projects

launch which help successfully redesign the whole process (Austin and Pisano, 2017).

Similarly, older adults can provide different perspectives to a task based on their life

experiences, which could encourage diverse thinking in problem solving.

6.6.4 Input Diversity Approach in Coordinated and Dependent Work

While the examples introduced in this thesis shows applications of input diversity

approaches in independent subtasks, we believe that the approach has potential for

coordinated and dependent work as well. For example, paraphrasing tasks could

be designed to be sequentially dependent (as in the the classic “Telephone Game”),

where diverse but paraphrases could be generated from different groups. This is

possible due to the fact that the paraphrase could be primed based on the given

context (Jiang et al., 2017; Mitchell et al., 2014). Similarly, diverse ways to explain

task instructions or educational content can help improve outcomes (Williams et al.,

2016, 2018). When applying input diversity to coordinated and depended work, more

factors should be considered such as the dynamics in the interaction between workers

or the change in the members.

128

CHAPTER VII

Conclusion

This dissertation has explored the potential of diversity-driven approaches in

crowdsourcing, which systematically elicit and leverage the input diversity of crowd

workers to improve the quality of collective annotations. In this context, we have

presented general contributions in designing crowdsourcing workflows and answer

aggregation algorithms. We introduced three crowdsourcing approaches: (i) lever-

aging tool diversity, (ii) leveraging instance diversity, and (iii) leveraging knowledge

diversity. For each approach, we introduced effective aggregation techniques that en-

able the practical usage of the conceptual approach in the visual annotation domain.

The proposed aggregation techniques compensate biases or uncertainty caused by

the tool, data, or the system, improving the accuracy of the collective output from

crowd-powered and hybrid intelligence systems.

As a final remark, this dissertation has explored the following thesis:

By designing crowd-powered intelligent systems with input diversity in mind to

elicit and aggregate diverse inputs with different error distributions, it is possible to

systematically reconstruct higher quality annotations.

Strategically eliciting and leveraging diverse system inputs from the workers rep-

resents a new paradigm in solving not only crowdsourcing problems, but also various

other problems in workplaces, communities, and societies. This thesis demonstrates a

129

new way of improving the aggregate quality of crowd-powered system output through

systematically eliciting and leveraging the input diversity from participants. We hope

this work will be a valuable resource for a broader research field, helping researchers

and practitioners to improve the quality of task outputs through the design of tasks

and the inclusion of diverse participants for complex systems.

130

BIBLIOGRAPHY

131

BIBLIOGRAPHY

Austin, R. D., and G. P. Pisano (2017), Neurodiversity as a competitive advantage,
Harvard Business Review, 95 (3), 96–103.

Bearman, A., O. Russakovsky, V. Ferrari, and L. Fei-Fei (2016), What’s the point: Se-
mantic segmentation with point supervision, in European Conference on Computer
Vision, pp. 549–565, Springer.

Bell, S., P. Upchurch, N. Snavely, and K. Bala (2013), Opensurfaces: A richly an-
notated catalog of surface appearance, ACM Transactions on Graphics (TOG),
32 (4), 111.

Bernstein, M. S., G. Little, R. C. Miller, B. Hartmann, M. S. Ackerman, D. R. Karger,
D. Crowell, and K. Panovich (2010), Soylent: a word processor with a crowd inside,
in Proceedings of the 23nd annual ACM symposium on User interface software and
technology, pp. 313–322, ACM.

Bernstein, M. S., J. Brandt, R. C. Miller, and D. R. Karger (2011), Crowds in two
seconds: Enabling realtime crowd-powered interfaces, in Proceedings of the 24th
annual ACM symposium on User interface software and technology, pp. 33–42,
ACM.

Bigham, J. P., et al. (2010), Vizwiz: nearly real-time answers to visual questions, in
Proceedings of the 23nd annual ACM symposium on User interface software and
technology, pp. 333–342, ACM.

Bojarski, M., et al. (2016), End to end learning for self-driving cars, arXiv preprint
arXiv:1604.07316.

Bragg, J., Mausam, and D. S. Weld (2013), Crowdsourcing multi-label classifica-
tion for taxonomy creation, in First AAAI conference on human computation and
crowdsourcing.

Bray, M., E. Koller-Meier, and L. Van Gool (2004), Smart particle filtering for 3d
hand tracking, in Automatic Face and Gesture Recognition, 2004. Proceedings. Sixth
IEEE International Conference on, pp. 675–680, IEEE.

Cao, X., A. C. Bovik, Y. Wang, and Q. Dai (2011), Converting 2d video to 3d: An
efficient path to a 3d experience, IEEE MultiMedia, 18 (4), 12–17.

132

Carlier, A., V. Charvillat, A. Salvador, X. Giro-i Nieto, and O. Marques (2014),
Click’n’cut: Crowdsourced interactive segmentation with object candidates, in Pro-
ceedings of the 2014 International ACM Workshop on Crowdsourcing for Multime-
dia, pp. 53–56, ACM.

Chang, J. C., S. Amershi, and E. Kamar (2017), Revolt: Collaborative crowdsourcing
for labeling machine learning datasets, in Proceedings of the 2017 CHI Conference
on Human Factors in Computing Systems, pp. 2334–2346, ACM.

Chen, L.-C., S. Fidler, A. L. Yuille, and R. Urtasun (2014), Beat the mturkers:
Automatic image labeling from weak 3d supervision, in Proceedings of the IEEE
conference on computer vision and pattern recognition, pp. 3198–3205.

Chen, W., Z. Fu, D. Yang, and J. Deng (2016), Single-image depth perception in the
wild, in Advances in Neural Information Processing Systems 29, edited by D. D.
Lee, M. Sugiyama, U. V. Luxburg, I. Guyon, and R. Garnett, pp. 730–738, Curran
Associates, Inc.

Chen, W., S. Qian, and J. Deng (2019), Learning single-image depth from videos using
quality assessment networks, in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 5604–5613.

Chen, Y., M. Pandey, J. Y. Song, W. S. Lasecki, and S. Oney (2020), Improving
crowd-supported gui testing with structural guidance, in Proceedings of the SIGCHI
conference on human factors in computing systems (submitted).

Chung, J. J., J. Y. Song, S. Kutty, S. R. Hong, J. Kim, and W. S. Lasecki (2019a),
Efficient elicitation approaches to estimate collective crowd answers, in Proceedings
of the ACM conference on Computer-Supported Collaborative Work (CSCW ’19),
ACM, New York, NY, USA, doi:10.1145/3359164.

Chung, J. J. Y., F. Xiao, N. Banovic, and W. S. Lasecki (2019b), Towards instanta-
neous crowdsourcing in the wild with crowd prediction, in Adjunct Proceedings of
the 28th Annual ACM Symposium on User Interface Software & Technology, ACM.

Criminisi, A., I. Reid, and A. Zisserman (2000), Single view metrology, International
Journal of Computer Vision, 40 (2), 123–148.

Dai, A., A. X. Chang, M. Savva, M. Halber, T. Funkhouser, and M. NieBner (2017),
Scannet: Richly-annotated 3d reconstructions of indoor scenes, in 2017 IEEE Con-
ference on Computer Vision and Pattern Recognition (CVPR), pp. 2432–2443,
IEEE.

Dawid, A. P., and A. M. Skene (1979), Maximum likelihood estimation of observer
error-rates using the em algorithm, Applied statistics, pp. 20–28.

Deng, J., W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei (2009), Imagenet: A
large-scale hierarchical image database, in Computer Vision and Pattern Recogni-
tion, 2009. CVPR 2009. IEEE Conference on, pp. 248–255, Ieee.

133

Denis, P., J. H. Elder, and F. J. Estrada (2008), Efficient edge-based methods for es-
timating manhattan frames in urban imagery, in European conference on computer
vision, pp. 197–210, Springer.

Di Salvo, R., D. Giordano, and I. Kavasidis (2013), A crowdsourcing approach to
support video annotation, in Proceedings of the International Workshop on Video
and Image Ground Truth in Computer Vision Applications, p. 8, ACM.

Dietterich, T. G., et al. (2000), Ensemble methods in machine learning, Multiple
classifier systems, 1857, 1–15.

Ding, C., and H. Peng (2005), Minimum redundancy feature selection from microarray
gene expression data, Journal of bioinformatics and computational biology, 3 (02),
185–205.

Dosovitskiy, A., G. Ros, F. Codevilla, A. Lopez, and V. Koltun (2017), Carla: An
open urban driving simulator, arXiv preprint arXiv:1711.03938.

Dow, S., A. Kulkarni, S. Klemmer, and B. Hartmann (2012), Shepherding the crowd
yields better work, in Proceedings of the ACM 2012 conference on Computer Sup-
ported Cooperative Work, pp. 1013–1022, ACM.

Eigen, D., and R. Fergus (2014), Predicting depth, surface normals and semantic
labels with a common multi-scale convolutional architecture, CoRR, abs/1411.4734.

Fischler, M. A., and R. C. Bolles (1981), Random sample consensus: a paradigm
for model fitting with applications to image analysis and automated cartography,
Communications of the ACM, 24 (6), 381–395.

Freund, Y., and R. E. Schapire (1995), A desicion-theoretic generalization of on-line
learning and an application to boosting, in European conference on computational
learning theory, pp. 23–37, Springer.

Gadiraju, U., B. Fetahu, and R. Kawase (2015), Training workers for improving
performance in crowdsourcing microtasks, in Design for Teaching and Learning in
a Networked World, pp. 100–114, Springer.

Gebru, T., J. Krause, J. Deng, and L. Fei-Fei (2017), Scalable annotation of fine-
grained categories without experts, in Proceedings of the 2017 CHI Conference on
Human Factors in Computing Systems, pp. 1877–1881, ACM.

Geiger, A., C. Wojek, and R. Urtasun (2011), Joint 3d estimation of objects and scene
layout, in Advances in Neural Information Processing Systems, pp. 1467–1475.

Geiger, A., P. Lenz, and R. Urtasun (2012), Are we ready for autonomous driving?
the kitti vision benchmark suite, in Conference on Computer Vision and Pattern
Recognition (CVPR).

134

Gordon, M., J. P. Bigham, and W. S. Lasecki (2015), Legiontools: a toolkit+ ui for
recruiting and routing crowds to synchronous real-time tasks, in Adjunct Proceed-
ings of the 28th Annual ACM Symposium on User Interface Software & Technology,
pp. 81–82, ACM.

Gouravajhala, S., J. Y. Song, J. Yim, R. Fok, Y. Huang, F. Yang, K. Wang, Y. An,
and W. S. Lasecki (2017), Towards hybrid intelligence for robotics, Collective In-
telligence Conference (CI).

Gouravajhala, S. R., J. Yim, K. Desingh, Y. Huang, O. C. Jenkins, and W. S. Lasecki
(2018), Eureca: Enhanced understanding of real environments via crowd assistance.

Gray, M. L., and S. Suri (2019), Ghost Work: How to Stop Silicon Valley from
Building a New Global Underclass, Houghton Mifflin Harcourt.

Griffin, B., and J. Corso (2019), Tukey-inspired video object segmentation, in 2019
IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 1723–
1733, IEEE.

Gurari, D., M. Sameki, and M. Betke (2016), Investigating the influence of data
familiarity to improve the design of a crowdsourcing image annotation system,
HCOMP.

Hansen, L. K., and P. Salamon (1990), Neural network ensembles, IEEE transactions
on pattern analysis and machine intelligence, 12 (10), 993–1001.

Hara, K., J. Sun, R. Moore, D. Jacobs, and J. Froehlich (2014), Tohme: detecting curb
ramps in google street view using crowdsourcing, computer vision, and machine
learning, in Proceedings of the 27th annual ACM symposium on User interface
software and technology, pp. 189–204, ACM.

He, K., G. Gkioxari, P. Dollár, and R. B. Girshick (2017), Mask R-CNN, CoRR,
abs/1703.06870.

Heit, E. (1994), Models of the effects of prior knowledge on category learning., Journal
of Experimental Psychology: Learning, Memory, and Cognition, 20 (6), 1264.

Hero, A. O., J. A. Fessler, and M. Usman (1996), Exploring estimator bias-variance
tradeoffs using the uniform cr bound, IEEE Transactions on Signal Processing,
44 (8), 2026–2041.

Hoiem, D., A. Efros, and M. Hebert (2005), Geometric context from a single image,
in ICCV.

Ipeirotis, P. G., F. Provost, and J. Wang (2010), Quality management on amazon
mechanical turk, in Proceedings of the ACM SIGKDD workshop on human compu-
tation, pp. 64–67, ACM.

135

James, S., and E. Johns (2016), 3d simulation for robot arm control with deep q-
learning, arXiv preprint arXiv:1609.03759.

Jiang, Y., J. K. Kummerfeld, and W. S. Lasecki (2017), Understanding task design
trade-offs in crowdsourced paraphrase collection, in Proceedings of the 55th Annual
Meeting of the Association for Computational Linguistics (Volume 2: Short Pa-
pers), pp. 103–109, Association for Computational Linguistics, Vancouver, Canada,
doi:10.18653/v1/P17-2017.

Jiang, Y., C. Finegan-Dollak, J. K. Kummerfeld, and W. Lasecki (2018), Effective
crowdsourcing for a new type of summarization task, in Proceedings of the 2018
Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, Volume 2 (Short Papers), vol. 2, pp.
628–633.

Jin, D., A. Leventidis, H. Shen, R. Zhang, J. Wu, and D. Koutra (2017), Perseus-hub:
Interactive and collective exploration of large-scale graphs, in Informatics, vol. 4,
p. 22, Multidisciplinary Digital Publishing Institute.

Kairam, S., and J. Heer (2016), Parting crowds: Characterizing divergent interpreta-
tions in crowdsourced annotation tasks, CSCW ’16.

Kalra, N., and S. M. Paddock (2016), Driving to safety: How many miles of driv-
ing would it take to demonstrate autonomous vehicle reliability?, Transportation
Research Part A: Policy and Practice, 94, 182–193.

Kamar, E., S. Hacker, and E. Horvitz (2012), Combining human and machine intel-
ligence in large-scale crowdsourcing, in Proceedings of the 11th International Con-
ference on Autonomous Agents and Multiagent Systems, pp. 467–474, International
Foundation for Autonomous Agents and Multiagent Systems.

Kaspar, A., G. Patterson, C. Kim, Y. Aksoy, W. Matusik, and M. Elgharib (2018),
Crowd-guided ensembles: How can we choreograph crowd workers for video seg-
mentation?, in Proceedings of the 2018 CHI Conference on Human Factors in Com-
puting Systems, CHI ’18, pp. 111:1–111:12, ACM, New York, NY, USA.

Kaur, H., M. Gordon, Y. Yang, J. P. Bigham, J. Teevan, E. Kamar, and W. S.
Lasecki (2017), Crowdmask: Using crowds to preserve privacy in crowd-powered
systems via progressive filtering, in Proceedings of the AAAI Conference on Human
Computation (HCOMP 2017)., HCOMP, vol. 17.

Kim, J. (2015), Learnersourcing: improving learning with collective learner activity,
Ph.D. thesis, Massachusetts Institute of Technology.

Kim, J., P. T. Nguyen, S. Weir, P. J. Guo, R. C. Miller, and K. Z. Gajos (2014),
Crowdsourcing step-by-step information extraction to enhance existing how-to
videos, in Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems, pp. 4017–4026, ACM.

136

Kim, S., E. Marquis, R. Alahmad, C. S. Pierce, and L. P. Robert Jr (2018), The im-
pacts of platform quality on gig workers’ autonomy and job satisfaction, in Com-
panion of the 2018 ACM Conference on Computer Supported Cooperative Work
and Social Computing, pp. 181–184, ACM.

Kittur, A., B. Smus, S. Khamkar, and R. E. Kraut (2011), Crowdforge: Crowdsourc-
ing complex work, in Proceedings of the 24th annual ACM symposium on User
interface software and technology, pp. 43–52, ACM.

Kittur, A., J. V. Nickerson, M. Bernstein, E. Gerber, A. Shaw, J. Zimmerman,
M. Lease, and J. Horton (2013), The future of crowd work, in Proceedings of the
2013 conference on Computer supported cooperative work, pp. 1301–1318, ACM.

Konrad, J., M. Wang, and P. Ishwar (2012), 2d-to-3d image conversion by learning
depth from examples, in 2012 IEEE Computer Society Conference on Computer
Vision and Pattern Recognition Workshops, pp. 16–22, IEEE.

Krishna, R., et al. (2017), Visual genome: Connecting language and vision using
crowdsourced dense image annotations, International Journal of Computer Vision,
123 (1), 32–73.

Kulkarni, A., M. Can, and B. Hartmann (2012), Collaboratively crowdsourcing work-
flows with turkomatic, in Proceedings of the acm 2012 conference on computer
supported cooperative work, pp. 1003–1012, ACM.

Kwolek, B. (2006), Model based facial pose tracking using a particle filter, in Geo-
metric Modeling and Imaging–New Trends (GMAI’06).

Laput, G., W. S. Lasecki, J. Wiese, R. Xiao, J. P. Bigham, and C. Harrison (2015),
Zensors: Adaptive, rapidly deployable, human-intelligent sensor feeds, in Proceed-
ings of the 33rd Annual ACM Conference on Human Factors in Computing Sys-
tems, pp. 1935–1944, ACM.

Lasecki, W., and J. Bigham (2012), Self-correcting crowds, in CHI’12 Extended Ab-
stracts on Human Factors in Computing Systems, pp. 2555–2560, ACM.

Lasecki, W. S. (2015), Crowd agents: interactive intelligent systems powered by the
crowd, Ph.D. thesis, University of Rochester.

Lasecki, W. S. (2019), On facilitating human-computer interaction via hybrid intel-
ligence systems, in Proceedings of the 7th annual ACM Conference on Collective
Intelligence. ACM.

Lasecki, W. S., and J. P. Bigham (2013), Interactive crowds: Real-time crowdsourcing
and crowd agents, in Handbook of human computation, pp. 509–521, Springer.

Lasecki, W. S., K. I. Murray, S. White, R. C. Miller, and J. P. Bigham (2011), Real-
time crowd control of existing interfaces, in Proceedings of the 24th annual ACM
symposium on User interface software and technology, pp. 23–32, ACM.

137

Lasecki, W. S., C. Miller, A. Sadilek, A. Abumoussa, D. Borrello, R. Kushalnagar, and
J. Bigham (2012), Real-time captioning by groups of non-experts, in Proceedings
of the 25th annual ACM symposium on User interface software and technology, pp.
23–34, ACM.

Lasecki, W. S., C. D. Miller, and J. P. Bigham (2013a), Warping time for more effec-
tive real-time crowdsourcing, in Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, CHI ’13, pp. 2033–2036, ACM, New York, NY,
USA.

Lasecki, W. S., Y. C. Song, H. Kautz, and J. P. Bigham (2013b), Real-time crowd
labeling for deployable activity recognition, in Proceedings of the 2013 conference
on Computer supported cooperative work, pp. 1203–1212, ACM.

Lasecki, W. S., M. Gordon, D. Koutra, M. F. Jung, S. P. Dow, and J. P. Bigham
(2014a), Glance: Rapidly coding behavioral video with the crowd, in Proceedings
of the 27th annual ACM symposium on User interface software and technology, pp.
551–562, ACM.

Lasecki, W. S., C. Homan, and J. P. Bigham (2014b), Architecting real-time crowd-
powered systems, Human Computation Journal.

Lease, M., J. Hullman, J. P. Bigham, M. S. Bernstein, J. Kim, W. S. Lasecki,
S. Bakhshi, T. Mitra, and R. C. Miller (2013), Mechanical turk is not anonymous,
Social Science Research Network.

Lee, S. W. (2018), Improving user involvement through live collaborative creation.

Lee, S. W., R. Krosnick, S. Y. Park, B. Keelean, S. Vaidya, S. D. O’Keefe, and
W. S. Lasecki (2018), Exploring real-time collaboration in crowd-powered systems
through a ui design tool, Proceedings of the ACM on Human-Computer Interaction,
2 (CSCW), 104.

Lee, S. W., A. Willette, D. Koutra, and W. S. Lasecki (2019), The effect of social
interaction on facilitating audience participation in a live music performance, in
Proceedings of the 2019 on Creativity and Cognition, pp. 108–120, ACM.

Leng, D., and W. Sun (2009), Finding all the solutions of pnp problem, in 2009 IEEE
International Workshop on Imaging Systems and Techniques, pp. 348–352, IEEE.

Lepetit, V., F. Moreno-Noguer, and P. Fua (2009), Epnp: An accurate o (n) solution
to the pnp problem, International journal of computer vision, 81 (2), 155.

Lin, C., M. Mausam, and D. Weld (2012a), Dynamically switching between synergistic
workflows for crowdsourcing, in AAAI Conference on Artificial Intelligence.

Lin, C. H., Mausam, and D. S. Weld (2012b), Crowdsourcing control: Moving be-
yond multiple choice, in In: Proceedings of the 28th Conference on Uncertainty in
Artificial Intelligence, UAI.

138

Lin, C. H., M. Mausam, and D. S. Weld (2012c), Dynamically switching between
synergistic workflows for crowdsourcing, in Proceedings of the Twenty-Sixth AAAI
Conference on Artificial Intelligence, AAAI’12, pp. 87–93, AAAI Press.

Lin, D., J. Dai, J. Jia, K. He, and J. Sun (2016), Scribblesup: Scribble-supervised
convolutional networks for semantic segmentation, in Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition, pp. 3159–3167.

Lin, T.-Y., M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár, and
C. L. Zitnick (2014), Microsoft coco: Common objects in context, in European
conference on computer vision, pp. 740–755, Springer.

Little, G., L. B. Chilton, M. Goldman, and R. C. Miller (2010), Turkit: human
computation algorithms on mechanical turk, in Proceedings of the 23nd annual
ACM symposium on User interface software and technology, pp. 57–66, ACM.

Liu, C., J. Kim, and H.-C. Wang (2018), Conceptscape: Collaborative concept map-
ping for video learning, in Proceedings of the 2018 CHI Conference on Human
Factors in Computing Systems, p. 387, ACM.

Long, J., E. Shelhamer, and T. Darrell (2015), Fully convolutional networks for se-
mantic segmentation, in The IEEE Conference on Computer Vision and Pattern
Recognition (CVPR).

Lowe, D. G. (1991), Fitting parameterized three-dimensional models to images, IEEE
Transactions on Pattern Analysis & Machine Intelligence, (5), 441–450.

Lu, C.-P., G. D. Hager, and E. Mjolsness (2000), Fast and globally convergent pose
estimation from video images, IEEE Transactions on Pattern Analysis and Machine
Intelligence, 22 (6), 610–622.

Lundgard, A., Y. Yang, M. L. Foster, and W. S. Lasecki (2018), Bolt: Instantaneous
crowdsourcing via just-in-time training, in Proceedings of the 2018 CHI Conference
on Human Factors in Computing Systems, CHI ’18, ACM, New York, NY, USA.

Luther, K., A. Pavel, W. Wu, J.-l. Tolentino, M. Agrawala, B. Hartmann, and S. P.
Dow (2014), Crowdcrit: crowdsourcing and aggregating visual design critique,
CSCW ’14.

Luther, K., N. Hahn, S. P. Dow, and A. Kittur (2015), Crowdlines: Supporting
synthesis of diverse information sources through crowdsourced outlines, in Third
AAAI Conference on Human Computation and Crowdsourcing.

MacLean, A., R. M. Young, V. M. Bellotti, and T. P. Moran (1991), Questions, op-
tions, and criteria: Elements of design space analysis, Human–computer interaction,
6 (3-4), 201–250.

139

Mao, A., E. Kamar, Y. Chen, E. Horvitz, M. E. Schwamb, C. J. Lintott, and A. M.
Smith (2013), Volunteering versus work for pay: Incentives and tradeoffs in crowd-
sourcing, in First AAAI conference on human computation and crowdsourcing.

Meissner, C. A., and J. C. Brigham (2001), Thirty years of investigating the own-race
bias in memory for faces: A meta-analytic review., Psychology, Public Policy, and
Law, 7 (1), 3.

Mitchell, M., D. Bohus, and E. Kamar (2014), Crowdsourcing language generation
templates for dialogue systems, in Proceedings of the INLG and SIGDIAL 2014
Joint Session, pp. 172–180.

Montemerlo, M., and S. Thrun (2007), Fastslam 2.0, FastSLAM: A scalable method
for the simultaneous localization and mapping problem in robotics, pp. 63–90.

Montemerlo, M., S. Thrun, D. Koller, B. Wegbreit, et al. (2002), Fastslam: A factored
solution to the simultaneous localization and mapping problem, Aaai/iaai, 593598.

Necker, L. A. (1832), Lxi. observations on some remarkable optical phenomena seen
in switzerland; and on an optical phenomenon which occurs on viewing a figure of
a crystal or geometrical solid, The London, Edinburgh, and Dublin Philosophical
Magazine and Journal of Science, 1 (5), 329–337.

Oka, K., Y. Sato, Y. Nakanishi, and H. Koike (2005), Head pose estimation system
based on particle filtering with adaptive diffusion control., in MVA, pp. 586–589.

Orts-Escolano, S., et al. (2016), Holoportation: Virtual 3d teleportation in real-time,
in Proceedings of the 29th Annual Symposium on User Interface Software and Tech-
nology, pp. 741–754, ACM.

Ouyang, T., and Y. Li (2012), Bootstrapping personal gesture shortcuts with the
wisdom of the crowd and handwriting recognition, in Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems, CHI ’12, pp. 2895–2904,
ACM, New York, NY, USA.

Oyama, S., Y. Baba, Y. Sakurai, and H. Kashima (2013a), Accurate integration of
crowdsourced labels using workers’ self-reported confidence scores, in Proceedings of
the Twenty-Third International Joint Conference on Artificial Intelligence, IJCAI
’13, pp. 2554–2560, AAAI Press.

Oyama, S., Y. Baba, Y. Sakurai, and H. Kashima (2013b), Em-based inference of true
labels using confidence judgments, in First AAAI Conference on Human Compu-
tation and Crowdsourcing.

Page, S. E. (2008), The Difference: How the Power of Diversity Creates Better
Groups, Firms, Schools, and Societies, Princeton University Press.

Pan, X., Y. You, Z. Wang, and C. Lu (2017), Virtual to real reinforcement learning
for autonomous driving, arXiv preprint arXiv:1704.03952.

140

Park, S., G. Mohammadi, R. Artstein, and L.-P. Morency (2012), Crowdsourcing
micro-level multimedia annotations: The challenges of evaluation and interface, in
Proceedings of the ACM multimedia 2012 workshop on Crowdsourcing for multime-
dia, pp. 29–34, ACM.

Peng, H., F. Long, and C. Ding (2005), Feature selection based on mutual infor-
mation: criteria of max-dependency, max-relevance, and min-redundancy, IEEE
Transactions on Pattern Analysis & Machine Intelligence, (8), 1226–1238.

Quinn, A. J., and B. B. Bederson (2011), Human computation: a survey and taxon-
omy of a growing field, in Proceedings of the SIGCHI conference on human factors
in computing systems, pp. 1403–1412, ACM.

Ramakrishnan, R., E. Kamar, B. Nushi, D. Dey, J. Shah, and E. Horvitz (2019),
Overcoming blind spots in the real world: Leveraging complementary abilities for
joint execution.

Rao, A., H. Kaur, and W. S. Lasecki (2018), Plexiglass: Multiplexing passive and
active tasks for more efficient crowdsourcing, in Proceedings of the AAAI 2018
Conference on Human Computation, ACM.

Ratner, A., S. H. Bach, H. Ehrenberg, J. Fries, S. Wu, and C. Ré (2017), Snorkel:
Rapid training data creation with weak supervision, Proceedings of the VLDB En-
dowment, 11 (3), 269–282.

Russell, B. C., A. Torralba, K. P. Murphy, and W. T. Freeman (2008), Labelme: a
database and web-based tool for image annotation, International journal of com-
puter vision, 77 (1), 157–173.

Rzeszotarski, J. M., and A. Kittur (2011), Instrumenting the crowd: using implicit
behavioral measures to predict task performance, in Proceedings of the 24th annual
ACM symposium on User interface software and technology, pp. 13–22, ACM.

Salisbury, E., S. Stein, and S. Ramchurn (2015a), Crowdar: augmenting live video
with a real-time crowd, in Third AAAI Conference on Human Computation and
Crowdsourcing.

Salisbury, E., S. Stein, and S. Ramchurn (2015b), Real-time opinion aggregation
methods for crowd robotics, in Proceedings of the 2015 International Conference
on Autonomous Agents and Multiagent Systems, pp. 841–849, International Foun-
dation for Autonomous Agents and Multiagent Systems.

Sankar, A., and S. M. Seitz (2017), Interactive room capture on 3d-aware mobile
devices, in Proceedings of the 30th Annual ACM Symposium on User Interface
Software and Technology, pp. 415–426, ACM.

Saxena, A., J. Schulte, and A. Ng (2007), Depth estimation using monocular and
stereo cues, in IJCAI.

141

Shah, N. B., and D. Zhou (2015), Double or nothing: Multiplicative incentive mech-
anisms for crowdsourcing, in Advances in neural information processing systems,
pp. 1–9.

Smith, A., A. E. Smith, D. W. Coit, T. Baeck, D. Fogel, and Z. Michalewicz (1997),
Penalty functions.

Snow, R., B. O’Connor, D. Jurafsky, and A. Y. Ng (2008), Cheap and fast—but is it
good?: evaluating non-expert annotations for natural language tasks, in Proceedings
of the conference on empirical methods in natural language processing, pp. 254–263,
Association for Computational Linguistics.

Song, J. Y., R. Fok, A. Lundgard, F. Yang, J. Kim, and W. S. Lasecki (2018), Two
tools are better than one: Tool diversity as a means of improving aggregate crowd
performance, in 23rd International Conference on Intelligent User Interfaces, IUI
’18, pp. 559–570, ACM, New York, NY, USA.

Song, J. Y., R. Fok, J. Kim, and W. S. Lasecki (2019a), Foureyes: Leveraging tool
diversity as a means to improve aggregate accuracy in crowdsourcing, ACM Trans-
actions on Interactive Intelligent Systems (TiiS), 10 (1), 3.

Song, J. Y., S. J. Lemmer, M. X. Liu, S. Yan, J. Kim, J. J. Corso, and W. S. Lasecki
(2019b), Popup: reconstructing 3d video using particle filtering to aggregate crowd
responses, in Proceedings of the 24th International Conference on Intelligent User
Interfaces, pp. 558–569, ACM.

Song, J. Y., J. J. Chung, D. Fouhey, and W. S. Lasecki (2020), C-reference: Improving
2d-3d object state reconstruction accuracy via crowdsourced joint object estima-
tion, in Proceedings of the ACM conference on Computer-Supported Collaborative
Work (submitted).

Sorokin, A., D. Berenson, S. S. Srinivasa, and M. Hebert (2010), People helping robots
helping people: Crowdsourcing for grasping novel objects, in 2010 IEEE/RSJ In-
ternational Conference on Intelligent Robots and Systems, pp. 2117–2122, IEEE.

Sternberg, R. J., and K. Sternberg (2016), Cognitive psychology, Nelson Education.

Su, H., C. R. Qi, Y. Li, and L. J. Guibas (2015), Render for cnn: Viewpoint estimation
in images using cnns trained with rendered 3d model views, in Proceedings of the
IEEE International Conference on Computer Vision, pp. 2686–2694.

Surowiecki, J. (2005), The wisdom of crowds, Anchor.

Swaminathan, S., R. Fok, F. Chen, T.-H. K. Huang, I. Lin, R. Jadvani, W. S. Lasecki,
and J. P. Bigham (2017), Wearmail: On-the-go access to information in your email
with a privacy-preserving human computation workflow, in Proceedings of the 30th
Annual ACM Symposium on User Interface Software and Technology, pp. 807–815,
ACM.

142

Szeto, R., and J. J. Corso (2017), Click here: Human-localized keypoints as guidance
for viewpoint estimation, in 2017 IEEE International Conference on Computer
Vision (ICCV), pp. 1604–1613, IEEE.

Tardif, J.-P. (2009), Non-iterative approach for fast and accurate vanishing point
detection, in 2009 IEEE 12th International Conference on Computer Vision, pp.
1250–1257, IEEE.

Thrun, S. (2000), Monte carlo pomdps, in Advances in neural information processing
systems, pp. 1064–1070.

Torbert, S. (2016), Applied computer science, 158 pp., Springer.

Tulsiani, S., S. Gupta, D. Fouhey, A. A. Efros, and J. Malik (2017), Factoring shape,
pose, and layout from the 2d image of a 3d scene, arXiv.

VaFRIC (2012), https://www.doc.ic.ac.uk/ ahanda/VaFRIC/.

Vernier, A. M., J. Y. Song, E. Sun, A. Kench, and W. S. Lasecki (2019), Towards
universal evaluation of image annotation interfaces, in Adjunct Proceedings of the
28th Annual ACM Symposium on User Interface Software & Technology, ACM.

Vijayanarasimhan, S., and K. Grauman (2014), Large-scale live active learning:
Training object detectors with crawled data and crowds, International Journal
of Computer Vision, 108 (1-2), 97–114.

Vondrick, C., D. Patterson, and D. Ramanan (2013), Efficiently scaling up crowd-
sourced video annotation, International Journal of Computer Vision, 101 (1), 184–
204.

washington (2014), https://rgbd-dataset.cs.washington.edu/.

Waymo (2017), Inside waymo’s secret world for training self-driving cars,
https://www.theatlantic.com/technology/archive/2017/08/inside-waymos-secret-
testing-and-simulation- facilities/537648/.

Waymo (2018), Waymo has the most autonomous miles, by a lot,
https://www.forbes.com/sites/davidsilver/2018/07/26/waymo-has-the-most-
autonomous-miles-by-a-lot/.

Welinder, P., S. Branson, P. Perona, and S. J. Belongie (2010), The multidimensional
wisdom of crowds, in Advances in Neural Information Processing Systems, pp.
2424–2432, Curran Associates, Inc.

Whitehill, J., T. fan Wu, J. Bergsma, J. R. Movellan, and P. L. Ruvolo (2009), Whose
vote should count more: Optimal integration of labels from labelers of unknown
expertise, in Advances in Neural Information Processing Systems, pp. 2035–2043,
Curran Associates, Inc.

143

Wiegand, T., G. J. Sullivan, G. Bjontegaard, and A. Luthra (2003), Overview of the
h. 264/avc video coding standard, IEEE Transactions on circuits and systems for
video technology, 13 (7), 560–576.

Williams, J. J., J. Kim, A. Rafferty, S. Maldonado, K. Z. Gajos, W. S. Lasecki, and
N. Heffernan (2016), Axis: Generating explanations at scale with learnersourcing
and machine learning, in Proceedings of the Third (2016) ACM Conference on
Learning@ Scale, pp. 379–388, ACM.

Williams, J. J., A. N. Rafferty, D. Tingley, A. Ang, W. S. Lasecki, and J. Kim
(2018), Enhancing online problems through instructor-centered tools for random-
ized experiments, in Proceedings of the 2018 CHI Conference on Human Factors
in Computing Systems, p. 207, ACM.

Yates, J. (1993), Control through communication: The rise of system in American
management, vol. 6, JHU Press.

Yu, L., and J. V. Nickerson (2011), Generating creative ideas through crowds: An
experimental study of combination, in Thirty Second International Conference on
Information Systems.

Yu, L., A. Kittur, and R. E. Kraut (2016), Encouraging “outside-the-box” thinking
in crowd innovation through identifying domains of expertise, CSCW ’16.

Yuen, J., B. Russell, C. Liu, and A. Torralba (2009), Labelme video: Building a
video database with human annotations, in Computer Vision, 2009 IEEE 12th
International Conference on, pp. 1451–1458, IEEE.

Zhong, Y., W. S. Lasecki, E. Brady, and J. P. Bigham (2015), Regionspeak: Quick
comprehensive spatial descriptions of complex images for blind users, in Proceedings
of the 33rd Annual ACM Conference on Human Factors in Computing Systems,
pp. 2353–2362, ACM.

Zhu, C., R. H. Byrd, P. Lu, and J. Nocedal (1997), Algorithm 778: L-bfgs-b: Fortran
subroutines for large-scale bound-constrained optimization, ACM Transactions on
Mathematical Software (TOMS), 23 (4), 550–560.

144

