
3

FourEyes: Leveraging Tool Diversity as a Means to
Improve Aggregate Accuracy in Crowdsourcing

JEAN Y. SONG and RAYMOND FOK, University of Michigan, USA

JUHO KIM, KAIST, Republic of Korea

WALTER S. LASECKI, University of Michigan, USA

Crowdsourcing is a common means of collecting image segmentation training data for use in a variety of

computer vision applications. However, designing accurate crowd-powered image segmentation systems is

challenging, because defining object boundaries in an image requires significant fine motor skills and hand-

eye coordination, which makes these tasks error-prone. Typically, special segmentation tools are created and

then answers from multiple workers are aggregated to generate more accurate results. However, individual

tool designs can bias how and where people make mistakes, resulting in shared errors that remain even after

aggregation. In this article, we introduce a novel crowdsourcing approach that leverages tool diversity as

a means of improving aggregate crowd performance. Our idea is that given a diverse set of tools, answer

aggregation done across tools can help improve the collective performance by offsetting systematic biases

induced by the individual tools themselves. To demonstrate the effectiveness of the proposed approach, we

design four different tools and present FourEyes, a crowd-powered image segmentation system that uses

aggregation across different tools. We then conduct a series of studies that evaluate different aggregation

conditions and show that using multiple tools can significantly improve aggregate accuracy. Furthermore, we

investigate the idea of applying post-processing for multi-tool aggregation in terms of correction mechanism.

We introduce a novel region-based method for synthesizing more accurate bounds for image segmentation

tasks through averaging surrounding annotations. In addition, we explore the effect of adjusting the threshold

parameter of an EM-based aggregation method. Our results suggest that not only the individual tool’s design,

but also the correction mechanism, can affect the performance of multi-tool aggregation. This article extends

a work presented at ACM IUI 2018 [46] by providing a novel region-based error-correction method and

additional in-depth evaluation of the proposed approach.

CCS Concepts: • Information systems → Crowdsourcing; • Human-centered computing → Human

computer interaction (HCI); • Computing methodologies → Computer vision;

Additional Key Words and Phrases: Crowdsourcing, human computation, multi-tool aggregation, tool diver-

sity, semantic image segmentation, computer vision

The reviewing of this article was managed by special issue associate editors Mark Billinghurst, Margaret Burnett, and

Aaron Quigley.

This research was supported in part by the Denso Corporation, Toyota Research Institute, and MCity at the University of

Michigan. This work was also supported in part by Institute for Information & communications Technology Promotion

(IITP) grant funded by the Korea government (MSIP) (No. 2017-0-00537, Development of Autonomous IoT Collaboration

Framework for Space Intelligence).

Authors’ addresses: J. Y. Song, R. Fok, and W. S. Lasecki, University of Michigan, Electrical Engineering and Computer

Science, 2260 Hayward Street, Ann Arbor, MI, 49085, USA; emails: {jyskwon, rayfok, wlasecki}@umich.edu; J. Kim, KAIST,

School of Computing, Daejeon, Republic of Korea; email: juhokim@kaist.ac.kr.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be

honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.

2160-6455/2019/08-ART3 $15.00

https://doi.org/10.1145/3237188

ACM Transactions on Interactive Intelligent Systems, Vol. 10, No. 1, Article 3. Publication date: August 2019.

mailto:permissions@acm.org
https://doi.org/10.1145/3237188

3:2 J. Y. Song et al.

ACM Reference format:

Jean Y. Song, Raymond Fok, Juho Kim, and Walter S. Lasecki. 2019. FourEyes: Leveraging Tool Diversity as

a Means to Improve Aggregate Accuracy in Crowdsourcing. ACM Trans. Interact. Intell. Syst. 10, 1, Article 3

(August 2019), 30 pages.

https://doi.org/10.1145/3237188

1 INTRODUCTION

The goal of image segmentation is to demarcate objects in a visual scene from the background,
allowing computer vision (CV) systems to learn to recognize specific objects. These CV systems
can, in turn, enable autonomous cars to identify pedestrians, surveillance drones to focus on po-
tential threats, and in-home robots to help people with motor or mobility impairments live more
comfortably and independently.

Perceiving the boundaries of physical objects comes naturally for people, but it remains a chal-
lenging open problem for CV systems due to the complexity of understanding the semantics of
visual scenes [15, 35]. Crowd-powered object segmentation tools can bridge this gap by leverag-
ing human understanding to produce large, manually demarcated training data sets ([2, 13, 32]) for
CV systems. However, designing crowd-powered tools that produce high-accuracy training data
and scale efficiently (with respect to human-time cost) remains an open problem, because the task
of manually marking object boundaries requires significant hand-eye coordination and fine motor
skills, resulting in a high error rate if these tasks are performed too quickly by workers.

Many web-based image segmentation tools ([1, 2, 5, 12, 31, 43]) have been designed to help
workers reduce the effort needed to complete a task and to increase the accuracy of their output.
However, different tool designs induce different error patterns in worker performance, which can
lead to repeated systematic mistakes when only a single tool is used. For example, some tools [2,
43] provide polygon drawing functionality to help trace object boundaries, but Bell et al. [2] re-
ported that workers often skip selecting parts of the object if automatic scrolling during selection
is not provided. We consider this to be a systematic error bias, because the same error pattern would
be unlikely to emerge if the tool were designed differently. In other words, it would be unlikely for
worker outputs from Click’n’Cut [5] (which asks workers to use left/right mouse clicks to iden-
tify foreground and background regions of an image) to result in the same mistakes as using the
polygon drawing tool. However, Click’n’Cut may exhibit its own systematic error pattern induced
by limitations in its own design. More generally, we consider error patterns that are found to be
common among worker outputs from a single tool to be systematic error biases, as they are likely
to be induced by the design of the tool itself. These errors are different from, for example, human
perceptual biases that may also systematically affect outcomes [40], in that they are common to
the outputs of a tool, not common to the annotations produced by an individual worker.

In this article, we propose the idea of leveraging tool diversity as a means of overcoming these
systematic error biases to improve aggregate crowd performance. Tool diversity is the extent to
which tools designed for the same task differ from one another in the systematic error biases
that they induce. Unlike standard aggregation methods in crowdsourcing, which try to design
and use the best single tool available with many workers to reach high accuracy, we show that
using multiple effective tools can diversify the error patterns in worker responses and help sys-
tems achieve higher combined accuracy (Figure 1). This insight is motivated by ensemble learning
methods in machine learning that use multiple learning algorithms to obtain better prediction than
can be obtained from any of the constituent algorithms alone [7]. A strength of leveraging tool
diversity is that the approach is orthogonal to, and thus may be combined with, many existing

ACM Transactions on Interactive Intelligent Systems, Vol. 10, No. 1, Article 3. Publication date: August 2019.

https://doi.org/10.1145/3237188

Tool Diversity as a Means to Improve Accuracy in Crowdsourcing 3:3

Fig. 1. This article introduces an approach to leveraging tool diversity that uses multiple different tools for

the same task (as in (b)) to improve aggregate crowd performance by offsetting systematic error biases that

might otherwise result from using any one tool type alone (as in (a)). Our findings on an image segmentation

task demonstrate that using a combination of tools can significantly increase aggregate accuracy.

crowdsourcing methods for improving quality over time (e.g., training workers [8, 51] or identify-
ing high-performing contributors [44]).

To demonstrate our proposed workflow, we design four different image segmentation tools and
introduce FourEyes, a multi-tool-based crowd-powered system that leverages combinations of
tools to generate better aggregate responses. After that, we report results from a series of studies
that evaluate different aggregation conditions—such as majority voting versus expectation maxi-
mization (EM), and single-tool aggregation versus up to four-tool combination aggregation—with
equally sized groups of workers. Our evaluation demonstrates the effectiveness of tool diversity by
showing that the output accuracy of heterogeneous tool combinations can be significantly higher
than homogeneous sets, providing output at least comparable to the best constituent tool and
always yielding significantly better results than the weakest constituent tool.

Moreover, we explore the idea of adding post-processing for multi-tool aggregation with respect
to the error correction mechanism. When leveraging tool diversity, once analysis on individual
tool performance is conducted and the error pattern of each tool is revealed, a system designer
can implement suitable correction mechanisms to further offset error biases. To correct errors in
image segmentation tasks, we introduce a new region-based method for synthesizing more accu-
rate bounds through averaging surrounding annotations. We explore the effects of mask size and
threshold parameter and show that the proposed method always increases the aggregate accuracy
of any tool combination by up to 6%. We also investigate the effect of a threshold parameter in the
EM method and show that the threshold parameter value that yields the best performance differs
by tool combination types.

Finally, we discuss generalizable guidelines to apply the multi-tool approach in other problem
domains. We characterize our problem in a more general form and summarize the properties of
crowdsourcing tasks that are amenable to our approach: those that are objective, tractable enough
for workers to produce nearly correct responses and increase in correctness as additional answers
are provided.

This article presents an extended version of work published at the 2018 ACM International Con-
ference on Intelligent User Interfaces [46], which first introduced the idea of leveraging tool diver-
sity during aggregation as a crowdsourcing technique. In addition to a more in-depth evaluation
of tool combinations (aggregation of three- and four-tool combinations), this article introduces a
novel region-based error correction method and explores the impact of parameter selection on the
region-based and EM methods as a means of post-processing for multi-tool aggregation.

ACM Transactions on Interactive Intelligent Systems, Vol. 10, No. 1, Article 3. Publication date: August 2019.

3:4 J. Y. Song et al.

The key contributions of this article are:

• A novel crowdsourcing paradigm that leverages a system’s or task’s tool diversity to ag-
gregate input across different types of tools to improve the combined accuracy of workers’
answers by offsetting systematic error biases.

• FourEyes, a crowd-powered image segmentation system that implements our approach,
combining the output of four different tool types to improve the collective accuracy of a
group of workers using a single segmentation tool.

• Experimental results from 51 objects across 12 indoor scenes segmented by 288 crowd work-
ers using four different tools that validate our system’s effectiveness and suggest the benefits
of our multi-tool approach.

• An evaluation of the aggregate results of each possible tool combination from FourEyes and
an exploration of the ability for correction mechanisms to further improve the accuracy of
the combined results by exploiting the error bias patterns of the individual tools.

2 RELATED WORK

Conventional approaches to improving crowd worker output accuracy include microtask decom-
position and consensus-based aggregation. These approaches are usually intended to reduce task
complexity and correct for the variance in individual worker responses, respectively. However,
when it comes to systematic error biases induced by a tool’s design, errors can persist even af-
ter decomposition or aggregation, since all workers use the same tool and the tool used in the
workflow may induce biases into worker responses. Our tool-diversity strategy builds on prior
work in crowdsourcing workflows and answer aggregation strategies to reduce these systematic
error biases. In this section, we discuss related work in designing crowdsourcing workflows and
improving the output quality by answer aggregation.

2.1 Crowdsourcing Workflows

In crowdsourcing, breaking large tasks into smaller microtasks has been a popular strategy to in-
crease the accuracy of crowd workers’ answers. Microtasks are small, context-free units of work
that are widely used in crowdsourcing workflows. Crowdsourcing platforms, such as Amazon Me-
chanical Turk, post these small units of work that (typically quasi-anonymous [28]) crowd workers
can accept and complete. TurKit [33] introduced the crash-and-rerun programming model to recur-
sively improve output of a challenging task by passing the task from worker to worker. Soylent [3]
showed that dividing a larger task into Find-Fix-Verify steps improves the accuracy of crowd work-
ers’ answers in document editing tasks. Similarly, ToolScape [19] used a Find-Verify-Expand work-
flow to enhance the process of extracting different steps in how-to videos. ConceptScape [34] ex-
tends multi-stage workflows and divides the concept map generation task into three stages with
multiple substeps within each stage. CrowdForge [20] introduced a MapReduce-like workflow to
accomplish even complex and interdependent tasks using microtasks. Crowdlines [37] introduced
two different workflows for merging information from multiple sources to create an outline. Turko-
matic [21] attempted to crowdsource the workflow itself, showing that the planning and execution
of a task can be done given some level of requester supervision.

While this prior research has explored how to use crowd workflows to collectively accomplish
what no single worker could alone, each task type was done using the same UI, and thus were
subject to systematic error biases in each tool. More recently, continuous crowdsourcing has made
real-time [24, 26] or even instantaneous [36] crowdsourcing responses from crowds possible. These
allow for the creation of interactive systems powered by human contributors. TimeWarp [25] in-
troduced the idea of creating workflows that enable a group of workers to complete tasks in a

ACM Transactions on Interactive Intelligent Systems, Vol. 10, No. 1, Article 3. Publication date: August 2019.

Tool Diversity as a Means to Improve Accuracy in Crowdsourcing 3:5

matter not possible with a single worker (in that case, provide captions in real time while listening
to half-speed audio) to improve individual performance. Plexiglass [42] introduced a workflow that
enables a single worker to interleave multiple tasks at a time. The idea is to multiplex “passive”
and “active” tasks together in one UI to more efficiently complete work that would otherwise con-
tain time spent idly waiting for a rare event to occur. CrowdMask [18] uses a pyramid workflow
to mask private content in images using crowds. Their method segments and distributes the seg-
ments of user content so workers can mark potentially private content without viewing enough
of it to be harmful. WearMail [47] introduced a privacy-preserving workflow that allowed crowds
to train a system on demand to accomplish an email search task without ever revealing the email
contents to workers.

Our work contributes to this line of research by introducing a novel crowdsourcing approach
that aggregates multiple crowd-powered tools to offer better performance than any of the con-
stituent tools alone. AgentHunt [29] had a similar motivation, using multiple workflows to out-
perform a single best workflow, but their approach used decision-making models to choose among
different workflows. To the best of our knowledge, we are the first to study methods for simulta-

neously using and aggregating different tools within a workflow to increase combined accuracy.

2.2 Improving Output Quality by Answer Aggregation and Bias Correction

Crowdsourced data can contain conflicts between workers’ answers, thus answer aggregation be-
comes a necessary step to obtain the final unitary output. In this section, we review answer ag-
gregation strategies and bias correction strategies that help improve crowdsourcing output.

2.2.1 Answer Aggregation Strategies. A common strategy to improve output quality in crowd-
sourcing systems is to aggregate independent workers’ answers on the same task into a single re-
sponse, typically via a consensus method like voting. Even simple majority voting has been shown
to produce accurate results for crowdsourcing tasks, such as linguistic annotation tasks [45] and
document editing tasks [3]. In terms of image segmentation tasks, ground truth segmentations of
objects have been generated via majority pixel voting with manually collected answers from multi-
ple crowd workers or experts [13, 32]. More sophisticated approaches using unsupervised learning
have been used to weight workers’ answers by using models of their abilities [4, 30, 49, 50]. Del-
uge [4] models workers’ sensitivity and specificity to detect noisy workers, and LazySusan [30]
tracks workers by assigning different weights based on the accuracy of a worker’s answers. Re-
searchers have also proposed probabilistic approaches to model not only the workers, but also the
properties of the data being labeled [49, 50].

2.2.2 Bias Correction Strategies. Assigning differential weights to workers’ answers during ag-
gregation is a preprocessing step that aims to correct individual worker errors before combining
the answers [44]. Ipeirotis et al. [16] showed that the EM algorithm can be used to separate biases
from unrecoverable errors, providing more reliable scores of the quality of the workers. The EM
algorithm [6, 16] predicts unknown (latent) correct answers by estimating weights for each crowd
worker’s answers. Dawid and Skene [6] showed that the EM algorithm significantly outperforms
majority voting when a majority of workers’ responses are correct and conditionally independent
given the ground truth answer. The EM algorithm is suitable for exploiting tool diversity in im-
age segmentation tasks because: (i) the majority of the pixels selected by any tool are assumed to
be correct and (ii) the probability of tools labeling a pixel is independent of any particular chosen
pixel. When designing a tool, its exact abilities and error biases are not typically known in advance,
because designers are not aware of the input images that the system will see in final use. Because
the performance of each tool can vary with images or object types, we can consider a tool’s ability

ACM Transactions on Interactive Intelligent Systems, Vol. 10, No. 1, Article 3. Publication date: August 2019.

3:6 J. Y. Song et al.

Fig. 2. The left diagram shows the hypotheses space of the possible segmentation tools, including the best

performing tool (f) and other possible hypotheses (h1 . . .h4). We are motivated by ensemble learning meth-

ods that construct a combination of alternative hypotheses (h1 and h2) to approximate the best hypothesis

f . The right flowchart shows a set of workers using two different tools to perform the same task. An ag-

gregation and correction pipeline can output reliable (consistent) and valid (accurate) aggregate results (f)

from two reliable but not valid answers (h1 and h2). This diagram represents the end-to-end process of the

proposed tool-diversity scheme: preparing different tools, aggregating, and correcting.

as the latent variable to be predicted. Therefore, we apply the EM algorithm across different tools
with the goal of maximizing the performance of the aggregated output.

Several approaches have been introduced to combat biases of individual crowd workers; there
has been little work on correcting error biases induced by tools or interfaces. For example, Refer-
ences [22] and [17] can be potentially used to correct systematic biases induced by workers but
require human mediators to correct biased answers. In this work, we explore the idea of applying
error correction when using multiple tools and suggest mechanisms that can offset the trade-offs
of different image segmentation tools, which can be done with or without a human mediator.

3 APPROACH

Prior work has used task decomposition—the process of breaking down larger tasks into more man-
ageable, focused pieces of work—to make tasks more approachable for non-expert crowd workers.
Once task decomposition has been used to break down a larger unit of work as much as possible
within a corresponding workflow, most crowdsourcing systems then recruit multiple workers in
parallel to further improve accuracy by aggregating their answers. We propose using multiple dif-
ferent tools across different workers to complete the same (sub)task, instead of having all workers
complete the same task with the same interface or tool. Our proposed approach fills in the gap
where traditional task decomposition leaves off.

3.1 Motivation from Ensemble Learning

Our work is conceptually motivated by ensemble learning in machine learning. Ensemble learning
methods are machine-learning algorithms that construct a set of learning algorithms and predict a
new data point by taking a weighted vote of the predictions from each learning algorithm [7, 9]. It
has been proven that ensembles often perform better than any single member [7]. Algorithm accu-
racy (i.e., better than random guessing) and diversity are necessary as well as sufficient conditions
for a combination of algorithms to be more accurate than any of its individual constituents [14].
The left diagram in Figure 2 shows how ensemble methods work. In the diagram, a learning algo-
rithm can be viewed as searching a space of hypotheses to identify the best performing hypothesis

ACM Transactions on Interactive Intelligent Systems, Vol. 10, No. 1, Article 3. Publication date: August 2019.

Tool Diversity as a Means to Improve Accuracy in Crowdsourcing 3:7

f , which can be computationally difficult to find. Ensemble learning constructs a combination of
two alternative hypotheses h1 and h2 with proper weights (w1 andw2), and approximates the best
hypothesis f by averaging the two. Our tool-diversity approach is analogous to ensemble learning
methods in that multiple image segmentation tools are combined to produce a better final result.

3.2 Aggregation of Reliable but Biased Tools

Even a carefully designed crowdsourcing system may often induce reliable (consistent) but not
valid (accurate) answers. For example, a semantic image classification task—of assigning classes
that correspond to objects that appear in an image—can have its systematic bias due to the design
of the tool. If a tool is designed to type free-form answers, it may bias workers to only use a limited
number of words that they can spell or find easier to spell. However, if a tool is designed such that
workers can click to select a word from a predefined list, the error pattern would be different.
These errors can be defined as systematic error biases, because the same error pattern would be
unlikely to arise if the tools were designed differently.

Instead of trying to fix a biased tool, our approach aims to combine answers from these multiple
biased tools to improve the aggregate result. Analogous to a necessary and sufficient condition in
the ensemble learning scheme, a suggested condition for using multiple tools is that the tools are
at least reliable, even if they are not valid. This allows for aggregation and correction mechanisms
that can offset the expected biases, eventually achieving both reliable and valid results when ag-
gregated. Figure 2 depicts the concept of tool aggregation within a crowdsourcing workflow. A
researcher or requester can provide Tool 1 to one set of workers and Tool 2 to a different set of
workers. When the tools are reliable but not valid with output hypotheses h1 and h2, respectively,
the aggregation and correction modules can combine the answers so the final output is approxi-
mately f , the best hypothesis. In the next sections, we show how we realized these tools and de-
signed aggregation and the correction mechanisms in the domain of semantic image segmentation.

4 FOUREYES

FourEyes is an image segmentation system that leverages four different crowd-powered tools to
produce accurate segmentation results by aggregating answers across different tool types. We
describe the individual tool here and then detail the novel aggregation methods in the next sections.

4.1 Choosing the Tools

We introduce four web-based segmentation tools that we designed to instantiate and test the tool-
diversity concept. We considered one key question when designing the tools: “How can we di-
versify the errors produced by different tools?” Because it is hard to predict what errors will be
induced by a given tool, we built tools specialized to work well with objects with different charac-
teristics, such as small or transparent objects, objects with fuzzy materials, and reflective surfaces.
These objects are current challenges to both automatic segmentation methods and human annota-
tors. We designed these tools to ideally perform differently for different types of objects, resulting
in greater error diversity. We categorized these objects into three groups and created tools that
are designed to minimize errors in each object category. The spaces we explored and the tools
we designed are summarized in Figure 3. We used the Question (Q), Option (O), and Criteria (C)
representation [38] of the design space for deciding which tools to build. The Question indicates a
key design issue, the Option node suggests possible answers to the Question, and the Criteria item
represents the core properties expected from choosing an Option. For one of the Options (O3 in
Figure 3), we differed the interface in two ways (Drag-and-Drop and Pin-Placing) so the interac-
tion of users can create different artifacts. We observed that different interactions lead to different

ACM Transactions on Interactive Intelligent Systems, Vol. 10, No. 1, Article 3. Publication date: August 2019.

3:8 J. Y. Song et al.

Fig. 3. Design space we considered when choosing the tools for the study. We used the Question (Q), Option

(O), and Criteria (C) representation of the design space.

Table 1. A Comparison of the Four Tools Across Two Design Elements

Design Element Comparison

Degree of freedom & Amount of interaction Basic Trace > Pin-Placing > Drag-and-Drop > Floodfill

Complexity of interface layout Pin-Placing > Drag-and-Drop > Floodfill > Basic Trace

error patterns, so we include both of the tools in the experiment section. In the following section,
we provide detailed descriptions of the four tools developed.

4.2 Designing the Tools

The four tools implemented were Basic Trace, Drag-and-Drop, Pin-Placing, and Floodfill. They
vary in the level of degree of freedom, interface layout, and amount of interaction needed from a
worker. The differences are summarized in Table 1.

4.2.1 Basic Trace. The first tool is a free-form drawing tool shown in Figure 4(a). With Ba-
sic Trace, workers click and drag their mouse to trace the outline of the query object in a scene
(Figure 4(a) ©3). Once a worker submits the initial trace line, a simple image-processing algorithm
connects the gaps and fixes the irregularities in the traced line to form a smooth shape. It then
highlights the pixels inside the traced shape and returns the result as the final object segmenta-
tion. Of our four tools, the Basic Trace is the most manual and provides the highest degree of
control. The strength of this tool is that it is highly flexible and workers can segment any type
of object if sufficient time is given. However, the weakness of the tool is that if a worker is idle
and not careful enough, the output can easily be very poor, e.g., a worker may draw a rough box
around an object instead of carefully following the boundary.

4.2.2 Drag-and-Drop. The second tool lets workers select an object template from a list
(Figure 4(b) ©1), which is generated by searching images of a target object from an image search
engine such as Google or Bing. These images are then filtered for transparency and size, and
the top N (in this article, we use N = 12) are downloaded to construct a template list for each
query object. Workers are asked to select the template that most accurately matches that object

ACM Transactions on Interactive Intelligent Systems, Vol. 10, No. 1, Article 3. Publication date: August 2019.

Tool Diversity as a Means to Improve Accuracy in Crowdsourcing 3:9

Fig. 4. Worker interface of the four segmentation tools used in our experiments.

in the scene based on its shape, proportion of dimensions, and perspective. In Drag-and-Drop,
workers overlay their selected template onto the object identified in the scene (Figure 4(b) ©2).
Workers are able to scale, rotate, and drag the template to adjust the angle its dimensions in an
attempt to closely match the shape of the actual object. Based on a worker’s transformation of the
template, the system determines the final object segmentation by identifying and annotating the
overlapping pixels between the template and the scene. The strength of this tool is that it is very
intuitive to use. However, the weakness of the tool is that it is hard to map deformable objects, or
even rigid objects if being viewed from different perspectives.

4.2.3 Pin-Placing. The third tool is also a template-based tool called Pin-Placing. A template
list is generated in the same manner as in Drag-and-Drop (Figure 4(c) ©1). With this tool, workers
select four arbitrary points on their selected object template (Figure 4(c) ©2) and pair them with

ACM Transactions on Interactive Intelligent Systems, Vol. 10, No. 1, Article 3. Publication date: August 2019.

3:10 J. Y. Song et al.

four corresponding points on the object in the scene (Figure 4(c) ©3). Workers can modify individ-
ual points or clear all points at once (Figure 4(c)©4). After the four pairs of points are submitted, an
automatic transformation algorithm is run to transform the template image to produce the final
object segmentation. Note that four pairs of control points are the minimum necessary to per-
form a non-linear deformation between two images, given the perspective limitation inherent in
a fixed-angle view in two dimension. Pin-Placing’s working mechanism is similar to sophisticated
techniques (e.g., which professional radiologists use for diagnosing lesions), but it is not intuitive
to novice workers.

One drawback of template-based approaches is that if an object in a scene has an atypical shape,
none of the template images in the list may have a shape similar to the object. In this case, a
possible solution would be allowing workers to switch to a different non-template-based tool. We
note that the two template-based tools, Drag-and-Drop and Pin-Placing, force workers to select
occluded parts of a target object when it overlaps with other objects. This is useful in domains
like robotics, where ground truth object geometry includes hidden parts. However, in this study,
we only consider the visible parts of a target object as the region of interest, because it is a more
general way of indicating objects in two-dimensional image segmentation. As a consequence, these
two tools necessarily select more false-positive regions than the other tools.

4.2.4 Floodfill. Floodfill (AKA Bucket-fill) is a mostly autonomous tool, combining a simple
region-growing method [48] with minimal human input to initialize the seed point and tune a
threshold parameter. Workers click on the object they want to segment (Figure 4(d) ©1) and adjust
a slider to tune one of the algorithm’s threshold parameters (Figure 4(d)©2). This triggers the RGB
Floodfill algorithm that highlights all neighboring pixels sharing an RGB value similar to the seed
point that was clicked. If the segmentation is unsatisfactory, either failing to select the entire object
or exceeding the object boundary, workers can adjust the slider to modify the highlighted area.
The tool is effective if the shape of an object is complex with many curves, but only when the
object is mostly monochromatic. If a query object is polychromatic or contains shaded regions,
the selection area can be smaller than the actual object boundaries, because the algorithm cannot
propagate across these regions.

4.3 System Interfaces

FourEyes begins by receiving a scene image and the user’s request in the form of a natural
language query, e.g., “mark the bowl.” The query is parsed to find nouns that are then displayed
to workers (Figure 4(a) ©2) as objects that need to be segmented from the scene. For each tool, a
short series of instructions (including the target object in bold) is displayed to workers while they
perform the task. Workers can also check the segmentation result before they submit their work
(“Check the Result” button in Figure 4(a) ©4). To discourage workers from idling, a task timer is
embedded (Figure 4(a)©5) that counts down from t seconds and turns negative when time runs out.
In this article, we used t = 30 in all experimental conditions. The timer serves as encouragement
to complete the task in a timely manner and does not otherwise affect the workers.

5 MEASURING THE PERFORMANCE OF INDIVIDUAL TOOLS

To understand the effect of tool diversity on improving aggregate crowd performance, we recruited
288 crowd workers from Mechanical Turk using LegionTools [11]. Workers were given one of the
four tools to perform a task of image segmentation. Note that we gave different tools to different
workers, because we consider the smallest unit of microtask as one worker segmenting one object
using a single tool. To avoid learning effects and worker-induced bias in the annotation results,
workers were randomly assigned to an annotation task (segmenting one scene using one tool),

ACM Transactions on Interactive Intelligent Systems, Vol. 10, No. 1, Article 3. Publication date: August 2019.

Tool Diversity as a Means to Improve Accuracy in Crowdsourcing 3:11

and they could not choose which tool they were given. We recruited six unique workers for each
tool-scene pair, resulting in a total of 1,224 object segmentations.

5.1 Dataset

We chose a dataset that included various indoor objects. The dataset included 12 different visual
scenes, each containing 3 to 7 objects, for a total of 51 objects. The scenes were gathered from
publicly available datasets1, 2 and represent typical indoor scenarios with commonplace objects.
They ranged from a living room to a tabletop and contained everyday objects (e.g., a plant, laptop,
soda can, cereal box, flashlight, etc.). In the experiment, each worker was shown one scene and a
series of object names to segment depending on the number of objects in the scene. For each task,
the order of the objects in each list was randomized to avoid any ordering bias. Each worker was
given one scene with one tool to perform a segmentation task.

5.2 Instructions and Payment

Before crowd workers could begin the task, they were shown a short instructional video demon-
strating the goal of the task and how to use the tool they would be provided with. The lengths of
the instructional videos were 36s, 54s, 78s, and 33s, respectively, for each tool: Basic Trace, Drag-
and-Drop, Pin-Placing, and Floodfill. Two of the tools (Drag-and-Drop and Pin-Placing) had longer
videos, because they explained how to choose the most similar template image. This additional step
delayed workers’ task completion time in the actual experiment as well. Workers were also shown
pictures exemplifying desired and undesired segmentations (the same example images were used
for all tools) so they understood the aim of the task to create a detailed boundary of a target ob-
ject in a scene. If the worker decided to proceed after watching the instruction video, they were
directed to the FourEyes’s worker UI and their subsequent interactions with the UI were recorded.
Task instructions were also accessible at any time if necessary (Figure 4(a) ©1). Each worker was
paid between $0.35 and $0.60 per task, proportional to the number of objects they had to segment
and the expected completion time using a given tool (a pay rate of ∼$10/hr). The expected time of
each tool was determined by its average latency time from a dozen of preliminary experiments.

5.3 Segmentation Quality Evaluation

To assess success on the image segmentation task, we measured the accuracy of each by comparing
the output similarity to the ground truth segmentation that was generated manually by the authors
prior to the experiments. One author carefully completed the task and another author verified the
quality of the resulting ground truth.

We used precision, recall, and F1 score (the harmonic mean of precision and recall) to compute
the pixel-level similarity (Equation (1)). To do this, the number of true positive, false positive, and
false negative pixels were counted for each crowdsourced segmentation.

Precision =
true positive

(true positive + false positive)

Recall =
true positive

(true positive + false negative)

F1 Score =
2 × Precision × Recall

(Precision + Recall)

(1)

1https://rgbd-dataset.cs.washington.edu/dataset.html/.
2https://www.doc.ic.ac.uk/∼ahanda/VaFRIC/iclnuim.html/.

ACM Transactions on Interactive Intelligent Systems, Vol. 10, No. 1, Article 3. Publication date: August 2019.

https://rgbd-dataset.cs.washington.edu/dataset.html/
https://www.doc.ic.ac.uk/ahanda/VaFRIC/iclnuim.html/

3:12 J. Y. Song et al.

Fig. 5. Precision-recall scatter plot of our four different tools. The different tools have different error patterns

(trade-offs) in terms of precision-recall metrics. (a) Basic Trace and (b) Drag-and-Drop show high recall but

low precision tendency, implying that the tools are reliable but not valid. (c) Pin-Placing shows the most

scattered pattern, implying that the tool’s performance highly depends on the query object, which makes

the tool neither reliable nor valid. (d) Floodfill shows high precision but low recall tendency, implying that

the tool is reliable but not valid.

Fig. 6. Original image (top left), ground truth image (bottom left), and exemplar segmentations using the

four tools with their precision and recall values reported on top. (a) Basic Trace, (b) Drag-and-Drop, (c) Pin-

Placing, and (d) Floodfill. The exemplar images represent a typical output of each tool.

5.4 Results

The different tools had different error patterns (trade-offs) in terms of precision and recall.
Figure 5 shows scatter plots of the overall segmentation result with each dot representing an
average precision-recall of one object being segmented using one of the tools in FourEyes. That is,
each dot is an average of six workers’ segmentation results. As shown in Figure 5(a) and (b), Basic
Trace and Drag-and-Drop tended to show high recall but low precision. We observed that with
these two tools, workers tended to select objects by putting large margins around the objects,
resulting in high recall but low precision. Examples of segmentation using these two tools are
shown in Figure 6(a) and (b), respectively. Meanwhile, Pin-Placing resulted in the most scattered
performance, as shown in Figure 5(c). This implies that the performance of the tool varies a lot
depending on object types. We presume that the underlying mechanism of computing non-linear
transformation of Pin-Placing is unfamiliar to novice workers, which led to scattered and low
overall performance. An example of using Pin-Placing is shown in Figure 6(c). In the example, a
worker selected a template image that is very different from the query object, resulting in both low
precision and low recall. Last, Figure 5(d) shows that Floodfill tended to give high precision but low

ACM Transactions on Interactive Intelligent Systems, Vol. 10, No. 1, Article 3. Publication date: August 2019.

Tool Diversity as a Means to Improve Accuracy in Crowdsourcing 3:13

Fig. 7. Precision (left), recall (center), and F1 score (right) plots of the cumulative distribution functions of

performances of a single worker per tool. In terms of precision, Floodfill has the highest number of workers

with high performance (>0.8). In terms of recall, Basic Trace has the highest number of workers with high

performance. The F1 score performance per worker is similar between tools compared to precision or recall,

because the two offset each other when combined.

Table 2. Average Performance (and Standard Deviation) of

the Four Individual Tools

Precision Recall F1 score

Basic Trace 0.62 (0.14) 0.89 (0.12) 0.71 (0.13)
Drag-and-Drop 0.57 (0.14) 0.86 (0.15) 0.66 (0.13)

Pin-Placing 0.53 (0.17) 0.71 (0.17) 0.58 (0.17)
Floodfill 0.84 (0.11) 0.63 (0.25) 0.67 (0.20)

recall performance. We observed that the selection area with Floodfill tended to be smaller than
the actual object boundaries due to boundaries that were shaded or colored differently. An exam-
ple segmentation of using Floodfill is shown in Figure 6(d). Because one side of the vase was much
brighter, a worker could not select the entire image with the seeded region-growing algorithm.
Figure 6 shows typical example worker segmentations from each tool, alongside the ground truth.

In terms of reliability and validity (as discussed in Section 3.2), Basic Trace, Drag-and-Drop, and
Floodfill can be considered reliable, since their output pattern is expectable (either high recall or
high precision). However, they are not valid, because their output is biased (either low precision
or low recall). However, Pin-Placing is neither reliable nor valid, because the output pattern is not
predictable, being highly dependent on the query object.

For each tool, we recruited 72 workers. Each worker performed segmentation for one scene,
where each scene contained three to seven objects. The cumulative distribution functions of per-
formances (precision, recall, and F1 score) of a single worker are summarized in Figure 7. From the
precision plot (left), we can see that the Floodfill tool has more workers with high scores (>0.8)
compared to the other tools. From the recall plot (center), we can see that Basic Trace and Drag-
and-Drop tools have more workers with high scores compared to the other tools. The F1 score
plot suggests that the tool’s harmonic performance between tools are less diverse compared to
precision or recall, due to the offset between the two. Average accuracy metrics for each tool are
summarized in Table 2. We use F1 score as our performance measurement. In general, Floodfill
gave the best performance in terms of precision, and Basic Trace gave the best recall and F1 score.

The average performances of each object are summarized in Figure 8. The hollow dots rep-
resent performance for individual objects (average performance of 24 workers who segmented
that object), and the filled dots are average performance over all objects in a single scene. The

ACM Transactions on Interactive Intelligent Systems, Vol. 10, No. 1, Article 3. Publication date: August 2019.

3:14 J. Y. Song et al.

Fig. 8. Precision (top), recall (middle), and F1 score (bottom) of average segmentation result of each object

and scene. The hollow dots represent performance for individual objects (average performance of 24 workers

who segmented that object), and the filled dots are average performance over all objects in a single scene.

Different scenes are separated with dotted vertical lines. The average performance of objects varied across

different scenes but lied in between 0.5 to 0.8 in terms of the F1 score.

performance between scenes varied due to the different characteristics of each scene. For exam-
ple, one scene was shot in front of a window, which added a lot of lighting to the scene, and
another scene had many rigid objects that were relatively easy to demarcate from the background.
Regardless of the characteristics, the average F1 score of scenes lay in between 0.5 to 0.8.

To calculate latency, we measured overall task time starting from when the worker began in-
teracting with the task to when the worker clicked “submit” at the end of the task. After dropping
outliers more than two standard deviations (2σ) from the mean latency, Basic Trace’s average
latency was 14.37s (σ = 8.08), Drag-and-Drop’s was 24.89s (σ = 11.25), Pin-Placing’s was 20.77s
(σ = 7.90), and Floodfill’s was 12.62s (σ = 10.41). The template-based tools had a higher segmen-
tation latency than the other two tools. This was expected, because the template-based tools are
more involved and perhaps less intuitive to general-purpose crowd workers. Using Floodfill, some
workers managed to produce a satisfactory segmentation within 3s, but others spent extra time
trying to perfect their segmentation, with diminishing returns in accuracy.

From these primary results, we observed different error patterns across the four tools that we
designed. The result matches our design intent to diversify the errors produced by different tools.
Now, we can think of each tool as alternate hypotheses h1, h2, h3, and h4 of the optimal hypothesis
f , with different error biases b1, b2, b3, and b4, respectively. As in ensemble learning, we expect
that aggregating the different tool pairs will improve the output accuracy by reducing accumu-
lated systematic error biases, especially when the combined tools are reliable but not valid with
complemented biases (as portrayed in Figure 2).

ACM Transactions on Interactive Intelligent Systems, Vol. 10, No. 1, Article 3. Publication date: August 2019.

Tool Diversity as a Means to Improve Accuracy in Crowdsourcing 3:15

Table 3. Average Performance (and Standard Deviation) of

Majority Voting on Single-tool Aggregation

Precision Recall F1 score

Basic Trace 0.61 (0.18) 0.99 (0.06) 0.73 (0.15)
Drag-and-Drop 0.57 (0.15) 0.95 (0.11) 0.70 (0.13)

Pin-Placing 0.57 (0.16) 0.83 (0.16) 0.66 (0.16)
Floodfill 0.85 (0.12) 0.70 (0.23) 0.73 (0.18)

6 EVALUATION OF MULTI-TOOL AGGREGATION SCHEME

To evaluate the effectiveness of our tool-diversity approach, we conducted a series of studies to
examine the performance improvement achieved from an ensemble of different tools. In the stud-
ies, we compared the performance of every possible tool aggregation: from single-tool to four-tool
aggregations. As a baseline condition, we first investigate the segmentation quality of single-tool
aggregation based on majority voting of four different workers. We implement a pixel-level ma-
jority voting method, with each answer weighted equally. In the second study, we do the same
majority voting, except on two, three, and four tool combinations aggregating four workers’ an-
swers from different tools. In the last study, we apply the EM method on multi-tool aggregation
to optimize the tools’ weights adaptively per pixel. Our studies show that the tool-diversity ap-
proach is a workflow design strategy that can achieve aggregate performance at least as good as
the superior constituent tool, and always significantly better than the inferior constituent tool.

6.1 Method 1. Single-Tool Aggregation with Majority Voting (Baseline)

Single-tool aggregation combines answers from the four workers who used the same tool to seg-
ment target objects. We randomly picked 15 worker combinations from the collected data. This
was performed to avoid any bias from accidentally choosing a good or bad combination of work-
ers. For each query object in the scene, pixel-level majority voting was performed to annotate each
pixel as either background or object. If more than two workers labeled a pixel as belonging to the
query object, then the pixel was included. The accuracy of the final segmentation was computed
as in the Segmentation Quality Evaluation section (Section 5.3). The results of 15 randomly drawn
combinations were averaged for all query objects. We summarized the average results in Table 3.

The change in precision was not significant with single-tool aggregation compared to the av-
erage precision without aggregation (see Table 2). However, recall and F1 scores improved. For
example, recall of Basic Trace increased by 10% (p < .01) compared to its average performance
without aggregation. The increase in recall is a natural consequence of answer aggregation with
low agreement thresholds. If the agreement threshold is higher, recall would decrease, because
more consensus is needed to annotate a pixel as an “object.” In the next sections, we observe if and
how further improvements can be achieved with multi-tool aggregation.

6.2 Method 2. Multi-Tool Aggregation with Majority Voting

Adding multiple tools for the same task can improve the aggregate accuracy when the tools com-
pensate for systematic error biases of each other. In this section, we look at the results of all possible
tool combinations aggregated using pixel-level majority voting. We start by focusing on two-tool
aggregate performance and then investigate three- and four-tool performance.

6.2.1 Two-Tool Aggregation. There are six possible two-tool aggregations for FourEyes,
(

4
2

)
= 6

(4 choose 2). For each tool pair, we randomly picked 15 pairs of workers from each tool, for a total of

ACM Transactions on Interactive Intelligent Systems, Vol. 10, No. 1, Article 3. Publication date: August 2019.

3:16 J. Y. Song et al.

Table 4. Average Performance (and Standard Deviation) of Majority Voting

on Two-tool Aggregation

Precision Recall F1 score

Basic Trace × Drag-and-Drop 0.61 (0.13) 0.98 (0.03) 0.74 (0.10)
Basic Trace × Pin-Placing 0.62 (0.13) 0.95 (0.08) 0.73 (0.11)
Basic Trace × Floodfill 0.74 (0.12) 0.94 (0.11) 0.81 (0.11)
Drag-and-Drop × Pin-Placing 0.57 (0.14) 0.92 (0.11) 0.69 (0.13)
Drag-and-Drop × Floodfill 0.71 (0.11) 0.93 (0.09) 0.79 (0.09)
Pin-Placing × Floodfill 0.69 (0.13) 0.86 (0.14) 0.75 (0.12)

Table 5. Average Performance (and Standard Deviation) of Majority Voting

on Three-tool Aggregation

Precision Recall F1 score

Basic Trace × Drag-and-Drop × Pin-Placing 0.60 (0.13) 0.96 (0.05) 0.72 (0.11)
Basic Trace × Drag-and-Drop × Floodfill 0.70 (0.12) 0.97 (0.04) 0.80 (0.09)
Basic Trace × Pin-Placing × Floodfill 0.69 (0.12) 0.94 (0.09) 0.78 (0.10)
Drag-and-Drop × Pin-Placing × Floodfill 0.65 (0.13) 0.92 (0.09) 0.75 (0.11)

four workers. As in Method 1, we computed pixel-level majority voting. The average performance
of all possible tool pairs is summarized in Table 4.

Two-tool aggregation improves F1 scores compared to single-tool aggregation. Every tool pair
except Drag-and-Drop × Pin-Placing (0.69) showed increased F1 scores compared to the single
constituent tools. The pair gave better F1 scores than aggregating Pin-Placing alone (0.66), but
gave a 0.9% lower F1 score than aggregating Drag-and-Drop alone (0.70). However, there was
no statistically significant difference between single-tool aggregation of Drag-and-Drop versus
multi-tool aggregation of Drag-and-Drop × Pin-Placing pair. We believe this pair did not increase
performance, because Pin-Placing is a tool that is neither reliable nor valid, with the lowest and
scattered performance distribution in terms of precision and recall metrics. One notable finding
about the result is that the highest F1 score achievable from single-tool aggregation is 0.73 (aggre-
gating Floodfill alone), whereas that from multi-tool aggregation is 0.81 (aggregating Basic Trace ×
Floodfill pair), which is a 9.8% (p < .005) performance improvement with mixing tools. To empha-
size the performance improvement in terms of F1 score, we compared the F1 scores of two-tool
aggregations (blue bars) with their constituent tools (red and green bars) in Figure 10(a).

6.2.2 Three-Tool Aggregation. There are four possible three-tool aggregations for FourEyes,(
4
3

)
= 4 (4 choose 3). For each tool aggregation, we randomly picked 15 combinations of workers:

two from the first tool and one from each of the second and third tools, for a total of four work-
ers. We maintained the same group size with two-tool aggregation to avoid interference from the
effect of group size during comparison. The same pixel-level majority voting was conducted. The
average performance of all possible tool combinations is summarized in Table 5.

Three-tool aggregation also improves F1 scores compared to single-tool aggregation. Every tool
aggregation except Basic Trace × Drag-and-Drop × Pin-Placing (0.72) showed increased F1 scores
compared to the single constituent tools. The aggregation gave a better F1 score than aggregat-
ing Drag-and-Drop or Pin-Placing alone (p < .005), but there was no significant difference com-
pared to Basic Trace. From the result, we observed that the aggregations that include both Basic

ACM Transactions on Interactive Intelligent Systems, Vol. 10, No. 1, Article 3. Publication date: August 2019.

Tool Diversity as a Means to Improve Accuracy in Crowdsourcing 3:17

Table 6. Average Performance (and Standard Deviation) of Majority

Voting on Four-tool Aggregation

Precision Recall F1 score

Basic Trace × Drag-and-Drop × Pin-Placing × Floodfill 0.65 (0.12) 0.95 (0.07) 0.76 (0.09)

Trace and Floodfill showed a significant performance improvement even compared to the supe-
rior constituent tools (p < .05). We hypothesize that including Floodfill in the tool set significantly
improves accuracy, because it has the most different error bias compared to the others. That is,
the diversity of systematic error biases affects the multi-tool aggregation performance. However,
compared to two-tool aggregation, adding a third tool did not improve the performance compared
to only combining Basic Trace with Floodfill. This could be because we lost the benefits of within-
group aggregation, since only one worker contributed to each of the second and third tool types.
We compared the F1 scores of three-tool aggregations (blue bars) with their constituent tools (red
and green bars) in Figure 10(b).

6.2.3 Four-Tool Aggregation. For aggregation of four tools, we randomly picked 15 combina-
tions of workers, one from each tool. The average performance is summarized in Table 6. The
comparison of F1 scores of four-tool aggregation with that of the constituent tools is summarized
in Figure 10(c).

Four-tool aggregation improves the F1 score compared to any of the constituent tools. The four-
tool aggregation results give us insight that increasing the number of tools to be combined does
not linearly increase the aggregate performance. We hypothesize that the small group size hinders
performance more than the benefits from adding more tool types, since having only one worker
from one tool type results in lack of error correction from within-tool aggregation. That is, small
groups with more tools do not necessarily improve performance, and to fully benefit from adding
more tools, the group size should increase as well.

6.3 Method 3. Multi-Tool Aggregation with EM Method

In this section, we model the multi-tool aggregation problem as an optimization problem and use
expectation maximization (EM) to estimate consensus-based semantic image segmentations. For
certain tool aggregations, EM-based multi-tool aggregation significantly improved output accu-
racy over majority voting.

We model our problem as follows: Assume M crowd workers segment an object in an image
A having N total pixels. Each pixel is labeled as either 1 (object) or 0 (background) by workers.
The label a worker m assigns to each pixel is denoted as zmn ∈ {0, 1}. We denote all labels from
worker m as a vector Zm . The true label yn , where n = 1, . . . ,N , of each pixel is unknown. The
true labels of A to be estimated are denoted as a vector Y . In the Dawid-Skene algorithm, it is
assumed that the probability of worker m labeling a pixel is independent of choosing a pixel, i.e.,
it is a constant over n. That is, we assume i.i.d. (independent and and identical distributed) pixels.
This assumption is acceptable, because we do not have a priori knowledge about the relationship
between different pixels, making all pixels have the same chance of being included in a selection.
In addition, we denote by θ the confusion matrices set to be estimated. We can estimate the true
labels Y by maximizing the marginal log-likelihood of the observed worker labels.

l (θ) := log
��
�

∑
Y ∈{0,1}n

L(θ ;Y ,Z)��
�
. (2)

ACM Transactions on Interactive Intelligent Systems, Vol. 10, No. 1, Article 3. Publication date: August 2019.

3:18 J. Y. Song et al.

Fig. 9. The flowchart shows the EM algorithm we adopted for the optimization. Two different image seg-

mentation tools, h1 and h2, each with different biases, b1 and b2 (respectively), pass segmented images to

the system. We estimate the weights, w1 and w2, to approximate the performance of f .

The EM algorithm applies an expectation (E) step and a maximization (M) step iteratively:

E Step: Calculate the expected value of the log-likelihood function, with respect to the con-
ditional distribution of Y given Z under the current estimate of θ .

M Step: Find the estimate θ that maximizes the expectation of marginal log-likelihood.

The E and M steps are repeated until the estimations converge. The diagram in Figure 9 shows
how the process is applied to our problem. The scene image is given as an input to two tools,h1 and
h2, that have different error models,b1 andb2, respectively. Crowd workers use the tools to segment
a query object, and the responses are transferred to the EM algorithm. Initial latent variables are set
as the majority voting result, and the confusion matrix for each response is updated based on the
initial assumption of the latent variables. Confusion matrices are updated by counting the number
of false positive, false negative, true positive, and true negative pixels. Once the confusion matrices
are updated for every pixel, the new estimations of latent variables are updated until convergence.

6.3.1 Two-Tool Aggregation. For a fair performance comparison, we used the same 15 worker
groupings from Method 1 (Single-Tool Aggregation with Majority Voting) and 2 (Multi-Tool Aggre-
gation with Majority Voting). We consider the ground truth labels as latent variables and estimate
them jointly with the unknown parameters—the weight per tool on each pixel—of our model.

The accuracy of two-tool aggregation with the EM method is summarized in Table 7. The com-
parison of F1 scores of the tool pairs with that of the constituent tools is summarized in Figure 10(a).
The numbers for majority voting on single-tool aggregation are obtained from Method 1, and the
numbers for majority voting on multi-tool aggregation are obtained from Method 2. The p-values
were computed using two tailed t-tests with Bonferroni correction applied after each t-test. The
results show that the EM-based multi-tool aggregation always performed significantly better than

ACM Transactions on Interactive Intelligent Systems, Vol. 10, No. 1, Article 3. Publication date: August 2019.

Tool Diversity as a Means to Improve Accuracy in Crowdsourcing 3:19

Table 7. Average Performance (and Standard Deviation) of the EM Method

on Two-tool Aggregation

Precision Recall F1 score

Basic Trace × Drag-and-Drop 0.63 (0.14) 0.98 (0.02) 0.75 (0.11)
Basic Trace × Pin-Placing 0.63 (0.14) 0.93 (0.09) 0.74 (0.12)
Basic Trace × Floodfill 0.75 (0.13) 0.93 (0.12) 0.81 (0.12)
Drag-and-Drop × Pin-Placing 0.59 (0.15) 0.90 (0.12) 0.70 (0.13)
Drag-and-Drop × Floodfill 0.71 (0.13) 0.90 (0.11) 0.78 (0.10)
Pin-Placing × Floodfill 0.72 (0.14) 0.81 (0.14) 0.75 (0.14)

Table 8. Average Performance (and Standard Deviation) of the EM Method

on Three-tool Aggregation

Precision Recall F1 score

Basic Trace × Drag-and-Drop × Pin-Placing 0.61 (0.13) 0.99 (0.02) 0.74 (0.10)
Basic Trace × Drag-and-Drop × Floodfill 0.60 (0.13) 0.95 (0.07) 0.72 (0.11)
Basic Trace × Pin-Placing × Floodfill 0.74 (0.13) 0.93 (0.12) 0.81 (0.12)
Drag-and-Drop × Pin-Placing × Floodfill 0.57 (0.15) 0.92 (0.11) 0.69 (0.13)

the inferior constituent tool and performed at least as well as the superior constituent tool. The
summarized result shows that the EM method significantly improves the performance of the tool
pairs compared to uniform majority voting, except for two tool pairs (Drag-and-Drop × Flood-
fill pair and Pin-Placing × Floodfill pair). We observed that the highest aggregate-performance
tool pairs were combinations of a high-precision (but low-recall) tool and a high-recall (but low-
precision) tool, as shown in the third and fifth bar groups in Figure 10(a). While there was a sig-
nificant performance improvement, the gain using EM was small (under 3%).

6.3.2 Three-Tool Aggregation. For a fair performance comparison, we used the same 15 worker
groupings from Methods 1 and 2. We applied EM-based weight assignment for each pixel by setting
the majority voting result as the initial weights. The accuracy of three-tool aggregation with EM
is summarized in Table 8.

The comparison of F1 scores of the three-tool aggregations with that of the constituent tools is
summarized in Figure 10(b). Similar to two-tool aggregation result, the EM method improved the
F1 score significantly, but the gain was small (below 2%). The EM method significantly improved
the performance of three-tool aggregations compared to majority voting, except for the aggre-
gation of Drag-and-Drop × Pin-Placing × Floodfill. It is worth noting that while the EM method
significantly improved accuracy for the tool pair Drag-and-Drop × Pin-Placing, adding Floodfill
and forming a three-tool aggregation limited the benefits of the EM method. This implies that a
more adaptive distribution of tool weights might be necessary when increasing tool aggregation
complexity. This is discussed further in Section 7, where a correction mechanism is proposed to
overcome the limitation of typical consensus-based pixel-level aggregation.

6.3.3 Four-tool Aggregation. We apply EM-based pixel-level weight assignment to the four-tool
aggregation condition to evaluate if the method could further improve aggregate accuracy. We
used the same 15 worker groupings from Methods 1 and 2. The result shows that the EM method
significantly (p < .01) improves aggregate performance of four-tool aggregations. However, as in
other tool aggregations, the gain was small (below 1%). The accuracy is summarized in Table 9.
The comparison of F1 scores of the tool pairs with those of the constituent tools is summarized in
Figure 10(c).

ACM Transactions on Interactive Intelligent Systems, Vol. 10, No. 1, Article 3. Publication date: August 2019.

3:20 J. Y. Song et al.

Table 9. Average Performance (and Standard Deviation) of the EM

Method on Four-tool Aggregation

Precision Recall F1 score

Basic Trace × Drag-and-Drop × Pin-Placing × Floodfill 0.61 (0.13) 0.99 (0.02) 0.74 (0.10)

Fig. 10. Accuracy comparison of different aggregation methods based on four tools: Basic Trace (T1), Drag-

and-Drop (T2), Pin-Placing (T3), and Floodfill (T4). The blue bars are multi-tool aggregation with majority

voting, and the purple bars are multi-tool aggregation with the EM method. The red bars are single-tool ag-

gregation of the best-performing tool, and the green bars are single-tool aggregation of the worst-performing

tool among all constituent tools. * significant at p < .05; ** significant at p < .01, both compared to EM-

based multi-tool aggregation (two-tailed t-test). Leveraging tool diversity always performed significantly

better than the inferior constituent tool, and performed at least as well as the superior tool.

In summary, combining answers from multiple tools increased the final segmentation accuracy
compared to using the best single constituent tool alone. This performance improvement could
be achieved by simple majority voting of segmentation results from different tools, and EM-based
weight assignment to different tools could further improve the performance gains from majority
voting. We analyzed multi-tool aggregation by varying tool combinations and learned that (1) the
diversity of systematic error biases across tools can lead to further improvement in the aggrega-
tion performance, (2) increasing the number of tools does not necessarily improve the multi-tool
aggregation accuracy, and (3) offsetting the trade-off between precision and recall is critical to im-
proving aggregate performance in the image segmentation domain. We believe that maintaining
a sufficient amount of within-group aggregation for each tool by increasing the group size of to-
tal workers is necessary to improve the multi-tool accuracy when increasing the number of tool
types. In the next section, we will investigate how to further improve aggregate performance by
exploring the error-correction mechanism for multi-tool aggregation.

ACM Transactions on Interactive Intelligent Systems, Vol. 10, No. 1, Article 3. Publication date: August 2019.

Tool Diversity as a Means to Improve Accuracy in Crowdsourcing 3:21

7 ERROR CORRECTION METHODOLOGIES FOR MULTI-TOOL AGGREGATION

To further improve the accuracy of our tool-diversity scheme, we explore the idea of using
error-correction mechanisms—post hoc processes to further improve the aggregate performance
by correcting errors that remain even after aggregation. The exploration extends the use of our
tool-diversity approach by providing options to improve aggregate accuracy even further when
combining workers’ answers across different tools. We first propose a morphological masking
technique that can automatically balance errors between two biased tools. In image processing,
morphological operations are defined as non-linear operations that transform images according
to the shape or feature in an image. Our proposed method uses a non-linear operation to alter the
label of each pixel by referring to the spatial feature of an aggregated result. Next, we explore the
effect of varying the threshold parameter of the EM algorithm and suggest a simple methodology
to adjust the threshold to find the best optimization parameter for each object to be segmented.

7.1 Morphological Masking Technique to Offset Biases between Different Tools

In Section 6, we observed that the aggregate accuracy of multiple tools can be improved when the
tools each have different systematic error patterns. In this section, we introduce a region-based
morphological masking technique that synthesizes more accurate segmentations by propagating
the level of agreement of neighboring annotations. The morphological masking technique further
compensates for the precision-recall trade-off by assigning an updated level of agreement to each
pixel and segmenting the image based on a new threshold parameter.

The proposed correction mechanism can help improve aggregate accuracy by addressing several
limitations faced by many consensus-based pixel-level aggregation methods, in particular those
due to the fact that they do not fully make use of the rich spatial correlations between pixels in an
image. The limitations and our corresponding solutions can be summarized as follows:

(1) Conventionally, the label of each pixel is estimated independently without referring to its
neighboring pixels’ labels, despite the fact that they can have strong spatial correlations.
We propose utilizing the spatial correlation by considering the average level of agreement
of neighboring pixels when deciding the final level of agreement of a single pixel.

(2) In most consensus-based methods, pixels with the same level of agreement for the same
label are treated as equivalent, making it impossible to divide them into subgroups to
increase the precision in labeling. We combat this problem by updating the level of agree-
ment of pixels based on the average agreement of the neighboring pixels. For example, as
in Figure 11(a), let us assume that S1 and S2 are two different segmentation results, while
GT is the ground truth segmentation to be estimated. In terms of precision and recall, S1

results in low precision and S2 results in low recall. With general consensus-based meth-
ods, we cannot approximate the ground truth boundary, because the areaA (S1 ∩ S2

c) with
agreement levelw1 cannot be labeled with two different labels, e.g., foreground and back-
ground. However, by assigning updated level of agreement to pixels as in Figure 11(b), we
can approximate GT by setting a threshold value between w11 and w12.

Therefore, we propose a technique that applies morphological masking on each pixel to refer to
its neighboring pixels, so, as in Figure 11(b), pixels can have better updated level of agreements.

7.1.1 Method. The morphological masking that we introduce is a region-based operation that
can modify the aggregated segmentation result by synthesizing more accurate bounds through
referring to the average of the surrounding annotations. In the method, the label of a pixel is

ACM Transactions on Interactive Intelligent Systems, Vol. 10, No. 1, Article 3. Publication date: August 2019.

3:22 J. Y. Song et al.

Fig. 11. The motivational concept of the morphological masking scheme. (a) S1 indicates one segmentation,

and S2 indicates another. The yellow GT line indicates ground truth segmentation. Using general consensus-

based aggregation (majority voting or EM), all the pixels within the area between S1 and S2 have the same

level of agreement, w1. However, to approximate GT, ideally, the area A (S1 ∩ S2
c) needs different level of

agreement as in (b), with w11 and w12. Our correction mechanism can approximate GT by giving updated

level of agreement to pixels by referring to the agreement level of neighboring pixels.

updated by referring to the sum of the neighboring pixels’ level of agreement:

w̄p =

M−1∑
i=0

wi

M
, (3)

where w̄p is the updated level of agreement of pixel p, M is the number of pixels inside the mask,
andwi is the original level of agreement of pixel i (the neighboring pixels). We also set a threshold
parameter that decides the label of each newly updated pixel.

lp =

{
1, w̄p > t
0, otherwise,

(4)

where lp is the label of pixel p, and t is the threshold parameter. The threshold parameter can be
arbitrarily chosen within 0 < t < 1 by the system designer.

The morphological masking updates the pixel agreement level around the transition area, for
example, pixels close to line S1 and S2 in Figure 11(a), where the level is changing fromw0 tow1 and
from w1 to w2, respectively. Note that the pixels far from the transition area do not get influenced
by the masking. If t is set small, the aggregated recall increases, because the pixels with small
agreement level can be labeled as an object. If t is set large, the precision increases, because only
pixels with large level of agreement can be labeled as an object. This feature makes it possible to
better offset the precision-recall trade-off in multi-tool aggregation.

7.1.2 Evaluation and Results. We applied five different masking sizes and two different thresh-
old parameters to explore the effect of our morphological masking technique. We randomly
picked 10 samplings of four workers for each tool combination types as in Section 6 to avoid
any bias from repeatedly choosing a good or bad combination of workers. The mask sizes chosen
are N = [5, 15, 25, 35, 45] for N × N masks, and the threshold parameters chosen are t = 0.2 and

ACM Transactions on Interactive Intelligent Systems, Vol. 10, No. 1, Article 3. Publication date: August 2019.

Tool Diversity as a Means to Improve Accuracy in Crowdsourcing 3:23

t = 0.5. The experiment was implemented in Matlab 9.4 on a 3.5GHz Intel Core i7. We computed
all five mask-size conditions at once, and it took about a minute per object to compute majority
voting of four workers, and about 1.4mins per object to compute the EM-based weighting of four
workers per object.

Figure 12 shows the morphological masking results of two different threshold parameters: 0.2
and 0.5. As expected, a low threshold (t = 0.2) increases recall but decreases precision, and a high
threshold (t = 0.5) increases precision but decreases recall. The masking size also affected the per-
formance. With t = 0.2, as the mask size increased, F1 score decreased because of the steep de-
crease in precision but the low increase in recall. With t = 0.5, as the mask size increases, F1 score
increased except for Floodfill (annotated as T4 in the figure), because precision largely increased
while recall degraded no smaller than 0.55. The Floodfill (T4) results in both Figures 12(b) and (d)
show a nonlinear spike at mask size 25 × 25. This is because there were less valid data points for
larger thresholds and larger mask sizes. There were many zero precision data points using Floodfill,
which we didn’t include in computing the average.

To further explore the effect of our morphological masking, we investigate the effect of mask
size with t = 0.5 for all possible tool combinations of FourEyes. The result is shown in Figure 13.
The left column shows the effect of masking on majority voting and the right column shows that
on EM-based weighted aggregation. It is observed that masking always improves the aggregated
result further up to maximum 5.8% for majority voting and 2.4% for EM. The mask size that induced
the largest performance improvement varied by tool combination types. The mask size with 5, 15,
and 35 induced maximum accuracy at least for one combination type.

In summary, applying our proposed morphological masking technique could further correct
aggregation errors remaining in multi-tool aggregation. The effect of the masking technique was
observed in every tool combination possible by FourEyes. This implies that not only the tools’
design, but also the settings of the correction mechanism can affect the aggregate accuracy of
multi-tool combinations.

7.2 The Effect of the EM Threshold

In Section 6.3, we saw that EM-based weighted aggregation can improve the aggregate accuracy
of the tool-diversity approach. However, we did not fully investigate the effect of the threshold
parameter of EM on performance. Threshold parameter adjustment can be a simple and easy tech-
nique to apply in the post-processing stage if it gives a better result. Thus, we investigate the effect
of different threshold parameters for EM-based weighted aggregation. We used the same 10 ran-
dom samplings of four workers in Section 6 to avoid any sampling bias. Figure 14 shows F1 scores
of each tool combination with different EM thresholds. In Figure 14(a), we see that while the best
performing EM threshold was 0.5, for Basic Trace × Drag-and-Drop, the highest performance was
achieved when the threshold was 0.7. This is likely, because Basic Trace and Drag-and-Drop are
the two tools with high recall but low precision characteristics. The large threshold parameter
compensates the precision and recall trade-off by inducing higher precision when aggregated. In
Figure 14(b), the highest accuracy was achieved when the threshold is 0.5, except for Basic Trace ×
Drag-and-Drop× Pin-Placing, which achieved the highest accuracy when the threshold is 0.7. This
is expected, because without the Floodfill tool, which has the opposite characteristics from Basic
Trace and Drag-and-Drop, trying to induce higher precision can help gain better compensation
between the precision and recall trade-off. Thus, we suggest that future system designers optimize
the threshold parameter when using our multi-tool aggregation approach by using methods like
a parameter sweep to find the best threshold to leverage the characteristics of each tool.

In summary, the threshold parameter of EM affected the aggregate performance. Different tool
combinations had different threshold parameters that maximize their performance. This implies

ACM Transactions on Interactive Intelligent Systems, Vol. 10, No. 1, Article 3. Publication date: August 2019.

3:24 J. Y. Song et al.

Fig. 12. Results of single-tool aggregation with different threshold parameters for the morphological mask-

ing (T1 = Basic Trace,T2 = Drag-and-Drop,T3 = Pin-Placing, andT4 = Floodfill). The left column shows F1

score, precision, and recall for t = 0.2 and the right column shows F1 score, precision, and recall for t = 0.5.

With t = 0.2, the F1 score degraded by applying the mask. This is because of the large decrease in the pre-

cision with only a small increase in recall. With t = 0.5, the F1 score improved by applying the mask up to

6% (except for Floodfill). This is because the precision largely increased while recall degraded no larger than

0.23.

ACM Transactions on Interactive Intelligent Systems, Vol. 10, No. 1, Article 3. Publication date: August 2019.

Tool Diversity as a Means to Improve Accuracy in Crowdsourcing 3:25

Fig. 13. F1 scores of multi-tool aggregation with different masking sizes (T1 = Basic Trace, T2 = Drag-and-

Drop, T3 = Pin-Placing, and T 4 = Floodfill). The left column is F1 score of majority voting and the right

column is F1 score of EM-based weighted aggregation. First row is two tools pairs, second row is three

tools combinations, and third row is four tools combination results. Every multi-tool combination condition

improved accuracy up to 6% by applying our masking technique. The mask size that induced the largest

performance improvement varied by tool combination types.

ACM Transactions on Interactive Intelligent Systems, Vol. 10, No. 1, Article 3. Publication date: August 2019.

3:26 J. Y. Song et al.

Fig. 14. F1 scores of every tool combination with five different EM thresholds (uniform intervals from 0.1 to

0.9). The result shows that the maximum performance that can be achieved varies by the threshold value,

implying that correctly setting the EM threshold parameter can further improve the aggregate accuracy.

that a post hoc process of choosing the best threshold parameter can further improve the aggregate
accuracy of crowdsourced answers. In the next section, we discuss some guidelines for system
designers who aim to use tool diversity to improve performance of their crowd-powered system.

8 DISCUSSION

FourEyes’s approach of leveraging tool diversity in designing a crowd-powered system goes be-
yond the paradigm of conventional crowdsourcing strategies, which divide a task into smaller mi-
crotasks and aggregate answers from workers using a single tool. FourEyes divides tools—and uses
multiple different tools with different systematic error biases—to improve the accuracy of aggre-
gate crowd answers. A practical concern in applying the tool-diversity approach is the cost and ef-
fort in building multiple tools with different (and even complementing) characteristics. In domains
where multiple standardized tools already exist, e.g., image labeling or handwriting transcription,
system designers can simply import and aggregate the existing tools without having to develop
multiple customized tools. In this setting, we suggest that it is worth using all tools available and
applying the various techniques introduced in this article, not just testing to find the best one tool.

However, we found that simply adding more tools does not linearly increase accuracy. This
might be due to the small aggregate group size that we purposely constrained for fair comparisons
with single-tool aggregation. That is, the insufficient number of within-tool workers contributing
might have led to limited improvement when leveraging multiple tools. This implies that addi-
tional judgments such as the within-tool-group size could have effects on the overall accuracy of
the multiple tools configuration. From our observation, we expect the multi-tool approach would
improve accuracy with a larger aggregate group size, and it would be the same as we would expect
for single-tool aggregation—adding more answers can improve the result, but sub-linearly. Also,
the unique characteristics of a tool need to be considered, as they might affect the crowd’s answer:
e.g., the amount of interaction, the complexity of interface layout, and do on. To maximize the
benefit of plugging in multiple tools, the tools combination should be carefully chosen by the sys-
tem designer to maximize benefits from leveraging tool diversity. The following section discusses
guidelines on using the tool-diversity approach in the system design.

8.1 Compensation of Biases in Leveraging Tool Diversity

To benefit from leveraging tool diversity in building crowdsourcing systems, a system or a task
should have clear and distinct trade-offs in its accuracy, and it should be possible to build tools
that can target one aspect at a time. Once different tools are built with distinctive properties in

ACM Transactions on Interactive Intelligent Systems, Vol. 10, No. 1, Article 3. Publication date: August 2019.

Tool Diversity as a Means to Improve Accuracy in Crowdsourcing 3:27

terms of their systematic biases, an aggregated method that can offset the biases should be applied
to merge the answers. Errors remaining after aggregation should be corrected using an error-
correction mechanism such as our morphological masking. Precision and recall often have an
inverse relationship, where one can be increased at the cost of reducing the other. In the crowd-
sourcing literature, research has investigated different payment schemes to observe the trade-off
between precision and recall on object annotation tasks [39]. Our work suggests that different
tools can be built to target either high precision or high recall so the harmonic means of both can
be maximized by aggregating results from different methods. More generally, our results indicate
that leveraging tool diversity in crowdsourcing tasks can improve aggregate crowd performance
by compensating for various types of inherent individual systematic error biases.

8.2 Generalizability

While we demonstrate this new crowdsourcing paradigm using an image segmentation task,
it could benefit any task where different approaches to solving the same problem can be de-
vised. Specifically, tasks that have the following properties would be especially amenable to our
approach:

• Expected correctness grows non-negatively with added worker input. In other words, on av-
erage, quality improves (collective answers converge to correct) as more worker responses
are collected. Problems where majority voting works would belong to this class.

• The task is tractable enough to yield approximately correct responses from workers, but
responses can be expected to have imperfections. Tasks such as real-time captioning [24]
or handwriting recognition [41] are examples of such tasks.

• The task has an objectively correct answer, but also tolerates imperfections from work-
ers’ responses. For example, creative-writing tasks would not be a good fit, because there
is no single correct answer, and they do not tolerate imperfections well (e.g., incomplete
sentences).

• The expected human error is distributed differently when using different tools. This way, a
diverse tool set can complement a broad range of error types. If this were not the case (i.e.,
if the errors were all biased in the same direction), then we would not expect multiple tools
to be significantly more effective than a single one alone.

Many common crowdsourcing problems (e.g., in computer vision, natural language processing,
or robotic/UI manipulation) have these properties, suggesting that a range of domains beyond the
one explored in this article may also benefit from our approach.

8.3 Envisioned Scenario

In this section, we illustrate how our proposed multi-tool approach and the post-processing meth-
ods, aggregation and correction, can be strategically used in a probable scenario.

Crystal is a developer at a computer-vision startup company. Her team recently built several
crowd-powered image segmentation tools that work pretty well in the lab, but she is not sure
which one will work the best when deployed in the wild. Instead of trying to find the best per-
forming tool among them, she decides to use all the tools that the team built by leveraging tool
diversity (Section 3). Therefore, for a single segmentation task, the crowd answers from every tool
are collected. She knows that the results will get better than any single tool used alone if the EM
method described in this article (Section 6.3) is applied. This improvement can be gained without
having to know the characteristics of each tool a priori. To further improve the final accuracy,
she performs a parameter sweep to find the best EM threshold for the tool sets based on a small
manually annotated ground truth sample from her dataset (Section 7.2). Additionally, she applies

ACM Transactions on Interactive Intelligent Systems, Vol. 10, No. 1, Article 3. Publication date: August 2019.

3:28 J. Y. Song et al.

a correction method that updates the level of agreement on each pixel being labeled as foreground
or background. The correction method leverages the characteristics of the tools to more precisely
correct for each tools’ biases (Section 7.1). With this process, the team built a system that gives
more accurate segmentation results than any single tool they built.

9 CONCLUSION AND FUTURE WORK

In this article, we have introduced a generalizable crowdsourcing approach of leveraging tool di-
versity to increase the output accuracy. When building a system, different tool designs can induce
different worker performance, leading to different systematic error biases. Prior work has used
task decomposition (into microtasks) to increase the reliability of a single task. However, system-
atic error biases can persist even after a task is divided as much as possible, if only a single tool
is used for the task. We claim that these systematic error biases can be reduced by using multi-
ple tools for the same task resulting in improved aggregate crowd performance. We demonstrated
the effectiveness of the tool-diversity strategy in the domain of the semantic image segmentation
problem. In our experiments, we used FourEyes, a crowd-powered image segmentation system
that consists of four different image segmentation tools to segment diverse objects in different
visual scenes. A series of studies showed that using multiple tools can significantly improve the
aggregate accuracy of a single task, especially when the trade-off between the aggregated tools is
high and the aggregation and correction method offsets the trade-off in the right direction. Overall,
our findings present new opportunities and directions for gaining a deeper understanding of how
tool designs influence the aggregate performance on crowdsourcing tasks, and introduces a new
way of thinking about decomposing tasks: based on tools instead of subtasks.

Future work may investigate methodologies for leveraging tool diversity in other domains, such
as video coding [23], annotation of fine-grained categories [10], or activity recognition [27]. For
instance, using multiple tools for the same task may benefit any NLP task with multiple channels.
A system designer can devise a tool that focuses on processing a text channel while sacrificing
the audio channel, and aggregate the result with a tool that focuses on the audio channel while
sacrificing processing of the text channel. Furthermore, this approach may open new ways of
optimizing the effort from both humans and computers—considering them as different resources
with different systematic error biases—to leverage the best of both worlds.

ACKNOWLEDGMENTS

The authors would like to thank Stephanie O’Keefe, Alan Lundgard, Fan Yang, Kyle Wang, and
Markos V. Koutras for their input on this work.

REFERENCES

[1] Amy Bearman, Olga Russakovsky, Vittorio Ferrari, and Li Fei-Fei. 2016. What’s the point: Semantic segmentation

with point supervision. In Proceedings of the European Conference on Computer Vision. Springer, 549–565.

[2] Sean Bell, Paul Upchurch, Noah Snavely, and Kavita Bala. 2013. OpenSurfaces: A richly annotated catalog of surface

appearance. ACM Trans. Graph. 32, 4 (2013), 111.

[3] Michael S. Bernstein, Greg Little, Robert C. Miller, Björn Hartmann, Mark S. Ackerman, David R. Karger, David

Crowell, and Katrina Panovich. 2010. Soylent: A word processor with a crowd inside. In Proceedings of the 23rd ACM

Symposium on User Interface Software and Technology. ACM, 313–322.

[4] Jonathan Bragg, Mausam, and Daniel S. Weld. 2013. Crowdsourcing multi-label classification for taxonomy creation.

In Proceedings of the 1st AAAI Conference on Human Computation and Crowdsourcing.

[5] Axel Carlier, Vincent Charvillat, Amaia Salvador, Xavier Giro-i Nieto, and Oge Marques. 2014. Click’n’Cut: Crowd-

sourced interactive segmentation with object candidates. In Proceedings of the International ACM Workshop on Crowd-

sourcing for Multimedia. ACM, 53–56.

[6] Alexander Philip Dawid and Allan M. Skene. 1979. Maximum likelihood estimation of observer error-rates using the

EM algorithm. Appl. Stat. 28, 1 (1979), 20–28.

ACM Transactions on Interactive Intelligent Systems, Vol. 10, No. 1, Article 3. Publication date: August 2019.

Tool Diversity as a Means to Improve Accuracy in Crowdsourcing 3:29

[7] Thomas G. Dietterich et al. 2000. Ensemble methods in machine learning. Mult. Class. Syst. 1857 (2000), 1–15.

[8] Steven Dow, Anand Kulkarni, Scott Klemmer, and Björn Hartmann. 2012. Shepherding the crowd yields better work.

In Proceedings of the ACM Conference on Computer Supported Cooperative Work. ACM, 1013–1022.

[9] Yoav Freund and Robert E. Schapire. 1995. A desicion-theoretic generalization of on-line learning and an application

to boosting. In Proceedings of the European Conference on Computational Learning Theory. Springer, 23–37.

[10] Timnit Gebru, Jonathan Krause, Jia Deng, and Li Fei-Fei. 2017. Scalable annotation of fine-grained categories without

experts. In Proceedings of the International Conference on Human Factors in Computing Systems. ACM, 1877–1881.

[11] Mitchell Gordon, Jeffrey P. Bigham, and Walter S. Lasecki. 2015. LegionTools: A toolkit+ UI for recruiting and routing

crowds to synchronous real-time tasks. In Adjunct Proceedings of the 28th ACM Symposium on User Interface Software

& Technology. ACM, 81–82.

[12] Sai Gouravajhala, Jean Y. Song, Jinyeong Yim, Raymond Fok, Yanda Huang, Fan Yang, Kyle Wang, Yilei An, and

Walter S. Lasecki. 2017. Towards hybrid intelligence for robotics. In Proceedings of the Collective Intelligence Conference

(CI’17).

[13] Danna Gurari, Mehrnoosh Sameki, and Margrit Betke. 2016. Investigating the influence of data familiarity to im-

prove the design of a crowdsourcing image annotation system. In Proceedings of the AAAI Conference on Human

Computation & Crowdsourcing (HCOMP’16).

[14] Lars Kai Hansen and Peter Salamon. 1990. Neural network ensembles. IEEE Trans. Pattern Anal. Machine Intell. 12, 10

(1990), 993–1001.

[15] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross B. Girshick. 2017. Mask R-CNN. Retrieved from: CoRR

abs/1703.06870.

[16] Panagiotis G. Ipeirotis, Foster Provost, and Jing Wang. 2010. Quality management on Amazon Mechanical Turk. In

Proceedings of the ACM SIGKDD Workshop on Human Computation. ACM, 64–67.

[17] Alexandre Kaspar, Genevieve Patterson, Changil Kim, Yagiz Aksoy, Wojciech Matusik, and Mohamed Elgharib. 2018.

Crowd-guided ensembles: How can we choreograph crowd workers for video segmentation? In Proceedings of the

Conference on Human Factors in Computing Systems (CHI’18). ACM, New York, NY, Article 111, 111:1–111:12 pages.

[18] Harmanpreet Kaur, Mitchell Gordon, Yiwei Yang, Jeffrey P. Bigham, Jaime Teevan, Ece Kamar, and Walter S. Lasecki.

2017. Crowdmask: Using crowds to preserve privacy in crowd-powered systems via progressive filtering. In Proceed-

ings of the AAAI Conference on Human Computation (HCOMP’17), Vol. 17.

[19] Juho Kim, Phu Tran Nguyen, Sarah Weir, Philip J. Guo, Robert C. Miller, and Krzysztof Z. Gajos. 2014. Crowdsourcing

step-by-step information extraction to enhance existing how-to videos. In Proceedings of the 32nd ACM Conference

on Human Factors in Computing Systems (CHI’14). ACM, New York, NY, 4017–4026.

[20] Aniket Kittur, Boris Smus, Susheel Khamkar, and Robert E. Kraut. 2011. Crowdforge: Crowdsourcing complex work.

In Proceedings of the 24th ACM Symposium on User Interface Software and Technology. ACM, 43–52.

[21] Anand Kulkarni, Matthew Can, and Björn Hartmann. 2012. Collaboratively crowdsourcing workflows with Turko-

matic. In Proceedings of the ACM Conference on Computer Supported Cooperative Work. ACM, 1003–1012.

[22] Walter Lasecki and Jeffrey Bigham. 2012. Self-correcting crowds. In CHI’12 Extended Abstracts on Human Factors in

Computing Systems. ACM, 2555–2560.

[23] Walter S. Lasecki, Mitchell Gordon, Danai Koutra, Malte F. Jung, Steven P. Dow, and Jeffrey P. Bigham. 2014. Glance:

Rapidly coding behavioral video with the crowd. In Proceedings of the 27th ACM Symposium on User Interface Software

and Technology. ACM, 551–562.

[24] Walter S. Lasecki, Christopher Miller, Adam Sadilek, Andrew Abumoussa, Donato Borrello, Raja Kushalnagar, and

Jeffrey Bigham. 2012. Real-time captioning by groups of non-experts. In Proceedings of the 25th ACM Symposium on

User Interface Software and Technology. ACM, 23–34.

[25] Walter S. Lasecki, Christopher D. Miller, and Jeffrey P. Bigham. 2013. Warping time for more effective real-time

crowdsourcing. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (CHI’13). ACM, New

York, NY, 2033–2036.

[26] Walter S. Lasecki, Kyle I. Murray, Samuel White, Robert C. Miller, and Jeffrey P. Bigham. 2011. Real-time crowd

control of existing interfaces. In Proceedings of the 24th ACM Symposium on User Interface Software and Technology.

ACM, 23–32.

[27] Walter S. Lasecki, Young Chol Song, Henry Kautz, and Jeffrey P. Bigham. 2013. Real-time crowd labeling for deploy-

able activity recognition. In Proceedings of the Conference on Computer Supported Cooperative Work. ACM, 1203–1212.

[28] Matthew Lease, Jessica Hullman, Jeffrey P. Bigham, Michael S. Bernstein, Juho Kim, Walter S. Lasecki, Saeideh

Bakhshi, Tanushree Mitra, and Robert C. Miller. 2013. Mechanical Turk is not anonymous. Soc. Sci. Res. Netw. (2013).

DOI: http://dx.doi.org/10.2139/ssrn.2228728

[29] Christopher Lin, Mausam Mausam, and Daniel Weld. 2012. Dynamically switching between synergistic workflows

for crowdsourcing. In Proceedings of the AAAI Conference on Artificial Intelligence.

[30] Christopher H. Lin, Mausam Daniel, and S. Weld. 2012. Crowdsourcing control: Moving beyond multiple choice. In

Proceedings of the 28th Conference on Uncertainty in Artificial Intelligence (UAI’12).

ACM Transactions on Interactive Intelligent Systems, Vol. 10, No. 1, Article 3. Publication date: August 2019.

http://dx.doi.org/10.2139/ssrn.2228728

3:30 J. Y. Song et al.

[31] Di Lin, Jifeng Dai, Jiaya Jia, Kaiming He, and Jian Sun. 2016. Scribblesup: Scribble-supervised convolutional networks

for semantic segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 3159–

3167.

[32] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr Dollár, and

C. Lawrence Zitnick. 2014. Microsoft COCO: Common objects in context. In Proceedings of the European Conference

on Computer Vision. Springer, 740–755.

[33] Greg Little, Lydia B. Chilton, Max Goldman, and Robert C. Miller. 2010. Turkit: Human computation algorithms on

Mechanical Turk. In Proceedings of the 23nd ACM Symposium on User Interface Software and Technology. ACM, 57–66.

[34] Ching Liu, Juho Kim, and Hao-Chuan Wang. 2018. ConceptScape: Collaborative concept mapping for video learning.

In Proceedings of the Conference on Human Factors in Computing Systems. ACM, 387.

[35] Jonathan Long, Evan Shelhamer, and Trevor Darrell. 2015. Fully convolutional networks for semantic segmentation.

In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR’15).

[36] Alan Lundgard, Yiwei Yang, Maya L. Foster, and Walter S. Lasecki. 2018. Bolt: Instantaneous crowdsourcing via just-

in-time training. In Proceedings of the Conference on Human Factors in Computing Systems (CHI’18). ACM, New York,

NY.

[37] Kurt Luther, Nathan Hahn, Steven P. Dow, and Aniket Kittur. 2015. Crowdlines: Supporting synthesis of diverse in-

formation sources through crowdsourced outlines. In Proceedings of the 3rd AAAI Conference on Human Computation

and Crowdsourcing.

[38] Allan MacLean, Richard M. Young, Victoria M. E. Bellotti, and Thomas P. Moran. 1991. Questions, options, and criteria:

Elements of design space analysis. Human–Comput. Interact. 6, 3–4 (1991), 201–250.

[39] Andrew Mao, Ece Kamar, Yiling Chen, Eric Horvitz, Megan E. Schwamb, Chris J. Lintott, and Arfon M. Smith. 2013.

Volunteering versus work for pay: Incentives and tradeoffs in crowdsourcing. In Proceedings of the 1st AAAI Confer-

ence on Human Computation and Crowdsourcing.

[40] Christian A. Meissner and John C. Brigham. 2001. Thirty years of investigating the own-race bias in memory for

faces: A meta-analytic review. Psych., Pub. Polic. Law 7, 1 (2001), 3.

[41] Tom Ouyang and Yang Li. 2012. Bootstrapping personal gesture shortcuts with the wisdom of the crowd and hand-

writing recognition. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (CHI’12). ACM,

New York, NY, 2895–2904.

[42] Akshay Rao, Harmanpreet Kaur, and Walter S. Lasecki. 2018. Plexiglass: Multiplexing passive and active tasks for

more efficient crowdsourcing. In Proceedings of the AAAI Conference on Human Computation. ACM.

[43] Bryan C. Russell, Antonio Torralba, Kevin P. Murphy, and William T. Freeman. 2008. LabelMe: A database and web-

based tool for image annotation. Int. J. Comput. Vis. 77, 1 (2008), 157–173.

[44] Jeffrey M. Rzeszotarski and Aniket Kittur. 2011. Instrumenting the crowd: Using implicit behavioral measures to

predict task performance. In Proceedings of the 24th ACM Symposium on User Interface Software and Technology.

ACM, 13–22.

[45] Rion Snow, Brendan O’Connor, Daniel Jurafsky, and Andrew Y. Ng. 2008. Cheap and fast—but is it good?: Evaluating

non-expert annotations for natural language tasks. In Proceedings of the Conference on Empirical Methods in Natural

Language Processing. Association for Computational Linguistics, 254–263.

[46] Jean Y. Song, Raymond Fok, Alan Lundgard, Fan Yang, Juho Kim, and Walter S. Lasecki. 2018. Two tools are better than

one: Tool diversity as a means of improving aggregate crowd performance. In Proceedings of the 23rd International

Conference on Intelligent User Interfaces (IUI’18). ACM, New York, NY, 559–570.

[47] Saiganesh Swaminathan, Raymond Fok, Fanglin Chen, Ting-Hao Kenneth Huang, Irene Lin, Rohan Jadvani, Walter

S. Lasecki, and Jeffrey P. Bigham. 2017. WearMail: On-the-go access to information in your email with a privacy-

preserving human computation workflow. In Proceedings of the 30th ACM Symposium on User Interface Software and

Technology. ACM, 807–815.

[48] Shane Torbert. 2016. Applied Computer Science. Springer. 158 pages.

[49] Peter Welinder, Steve Branson, Pietro Perona, and Serge J. Belongie. 2010. The multidimensional wisdom of crowds.

In Proceedings of the Conference on Advances in Neural Information Processing Systems. Curran Associates, Inc., 2424–

2432.

[50] Jacob Whitehill, Ting Fan Wu, Jacob Bergsma, Javier R. Movellan, and Paul L. Ruvolo. 2009. Whose vote should count

more: Optimal integration of labels from labelers of unknown expertise. In Proceedings of the Conference on Advances

in Neural Information Processing Systems. Curran Associates, Inc., 2035–2043.

[51] Joseph Jay Williams, Juho Kim, Anna Rafferty, Samuel Maldonado, Krzysztof Z. Gajos, Walter S. Lasecki, and Neil

Heffernan. 2016. Axis: Generating explanations at scale with learnersourcing and machine learning. In Proceedings

of the 3rd ACM Conference on Learning@ Scale. ACM, 379–388.

Received May 2018; revised July 2018; accepted July 2018

ACM Transactions on Interactive Intelligent Systems, Vol. 10, No. 1, Article 3. Publication date: August 2019.

