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Abstract
Decisions made by human-AI teams (e.g., AI-advised hu-
mans) are increasingly common in high-stakes domains such
as healthcare, criminal justice, and finance. Achieving high
team performance depends on more than just the accuracy of
the AI system: Since the human and the AI may have differ-
ent expertise, the highest team performance is often reached
when they both know how and when to complement one an-
other. We focus on a factor that is crucial to supporting such
complementary: the human’s mental model of the AI capabil-
ities, specifically the AI system’s error boundary (i.e. know-
ing “When does the AI err?”). Awareness of this lets the hu-
man decide when to accept or override the AI’s recommenda-
tion. We highlight two key properties of an AI’s error bound-
ary, parsimony and stochasticity, and a property of the task,
dimensionality. We show experimentally how these proper-
ties affect humans’ mental models of AI capabilities and the
resulting team performance. We connect our evaluations to
related work and propose goals, beyond accuracy, that merit
consideration during model selection and optimization to im-
prove overall human-AI team performance.

1 Introduction
While many AI applications address automation, numer-
ous others aim to team with people to improve joint per-
formance or accomplish tasks that neither the AI nor peo-
ple can solve alone (Gillies et al. 2016; Kamar 2016;
Chakraborti and Kambhampati 2018; Lundberg et al. 2018;
Lundgard et al. 2018). In fact, many real-world, high-stakes
applications deploy AI inferences to help human experts
make better decisions, e.g., with respect to medical diag-
noses, recidivism prediction, and credit assessment. Rec-
ommendations from AI systems—even if imperfect—can
result in human-AI teams that perform better than either
the human or the AI system alone (Wang et al. 2016;
Jaderberg et al. 2019).

Successfully creating human-AI teams puts additional de-
mands on AI capabilities beyond task-level accuracy (Grosz
1996). Specifically, even though team performance depends
on individual human and AI performance, the team perfor-
mance will not exceed individual performance levels if hu-
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Figure 1: AI-advised human decision making for read-
mission prediction: The doctor makes final decisions us-
ing the classifier’s recommendations. Check marks denote
cases where the AI system renders a correct prediction, and
crosses denote instances where the AI inference is erro-
neous. The solid line represents the AI error boundary, while
the dashed line shows a potential human mental model of the
error boundary.

man and the AI cannot account for each other’s strengths
and weaknesses. In fact, recent research shows that AI ac-
curacy does not always translate to end-to-end team perfor-
mance (Yin, Vaughan, and Wallach 2019; Lai and Tan 2018).
Despite this, and even for applications where people are in-
volved, most AI techniques continue to optimize solely for
accuracy of inferences and ignore team performance.

While many factors influence team performance, we study
one critical factor in this work: humans’ mental model of
the AI system that they are working with. In settings where
the human is tasked with deciding when and how to make
use of the AI system’s recommendation, extracting benefits
from the collaboration requires the human to build insights
(i.e., a mental model) about multiple aspects of the capabil-
ities of AI systems. A fundamental attribute is recognition
of whether the AI system will succeed or fail for a partic-
ular input or set of inputs. For situations where the human
uses the AI’s output to make decisions, this mental model of
the AI’s error boundary—which describes the regions where
it is correct versus incorrect—enables the human to predict
when the AI will err and decide when to override the auto-
mated inference.

We focus here on AI-advised human decision making, a
simple but widespread form of human-AI team, for example,



in domains like medical diagnosis, candidate screening for
hiring, and loan approvals. Figure 1 illustrates an example of
AI-advised human decision making for healthcare (Wiens,
Guttag, and Horvitz 2016; Caruana et al. 2015). A doctor,
using advice from a binary classifier, must decide whether
to place a patient in a special (but costly) outpatient pro-
gram. For a given input, the AI first recommends an action
and the human then decides whether to trust or override it to
make a final decision. This kind of human-AI collaboration
is one formulation of teaming, where there is a binary trust
model where the human either trusts or distrusts (and dis-
cards) the output of the AI system’s influences. We consider
the binary trust model instead of situations where the output
of the AI system can have varying influence on human de-
cision makers. Team performance in AI-advised human de-
cision making depends on how well the human understands
the AI’s error boundary. A mismatch between the human’s
mental model and the true error boundary can lead to sub-
optimal decisions, such as: (1) the human may trust the AI
when it makes an erroneous recommendation, (2) the human
may not trust the AI when it makes a correct recommenda-
tion. These decision can lower productivity and/or accuracy.

We define properties of an AI’s error boundary that affect
human’s ability to form an accurate mental model, such as
parsimony and non-stochasticity. Intuitively, an error bound-
ary is parsimonious if it is simple to represent. For exam-
ple, an error boundary that can be described via a minimal
number of features or conjunctive expressions on those fea-
tures is considered to be parsimonious. A non-stochastic er-
ror boundary can be modeled with a small set of features
that reliably and cleanly distinguishes successes from errors
without uncertainty. Another factor that relates to a humans’
ability to create a mental model of the error boundary is the
task dimensionality, which we characterize by the number
of features defining each instance.

We investigate the effect of these properties by conducting
controlled user studies using CAJA, which is an open-source
and configurable platform that implements an abstract ver-
sion of AI-advised human decision making (Bansal et al.
2019). Our results demonstrate that parsimony and non-
stochasticity of error boundaries improve people’s ability to
create a mental model. Moreover, the experiments charac-
terize traits of how people create and update mental mod-
els over time, highlighting the need for potential guidance
in this process. Given the importance of mental models for
the ultimate goal of team performance, this work advocates
for increased attention to properties necessary for effective
human-centered AI. We make the following contributions:

1. We highlight an under-explored but significant research
challenge at the intersection of AI and human computa-
tion research—the role of humans’ mental models in team
performance in AI-advised human decision making.

2. We identify two attributes of AI systems, parsimony and
non-stochasticity of error boundaries, that may help hu-
mans learn better mental models of AI competence and
therefore improve team performance.

3. Using an open-source, game-centric platform, we show
that humans’ mental models of AI competence are a crit-

ical component of achieving high team performance, pro-
vide insights into how humans build mental models in dif-
ferent settings, and demonstrate the desirability of parsi-
monious and non-stochastic error boundaries.

4. We integrate these results with those of previous work to
create a new set of guidelines to help developers max-
imize the team performance of human-centered AI sys-
tems that provide advice to people.

In Section 2 we formally define various concepts: AI-
advised human decision making, error boundaries of AI, and
mental models of error boundaries. In Section 3, we formu-
late desirable properties of error boundaries. In Section 4
we study their effect on mental models. We conclude with a
discussion of recommendations for developing more human-
centered ML.

2 Background
AI-advised human decision making
Following Bansal et al. (2019), we focus on a simple form
of human-AI teamwork that is common in many real-world
settings, such as a 30-day readmission classifier supporting
a doctor (Bayati et al. 2014) or a recidivism predictor sup-
porting judges in courts (Angwin et al. 2016). We refer to
situations where an AI system provides a recommendation
but the human makes the final decision as AI-advised human
decision making (Figure 1). The team solves a sequence of
tasks, repeating the following cycle for each time, t.

S1: The environment provides an input, xt.

S2: The AI (possibly mistaken) suggests an action, h(xt).

S3: Based on this input, the human makes a decision, ut.

S4: The environment returns a reward, rt, which is a func-
tion of the user’s action, the (hidden) best action, and
other costs of the human’s decision (e.g., time taken).

The reward feedback in S4 lets the human learn when to trust
the AI’s recommendation. The cumulative reward R over T
cycles is the team’s performance. Throughout this paper, we
will assume that the AI system is a machine learning (ML)
classifier that maps an input x ∈ X to an action y from the
set of actions Y.

Error boundaries of ML models
The error boundary of model h is a function f that describes
for each input x whether model output h(x) is the correct
action for that input: f : (x, h(x)) → {T, F}. In other
words, the error boundary defines the instances for which
the model is correct. Note that this is not to be confused with
the model’s decision boundary, which outputs model pre-
dictions. The success of teamwork hinges on the human’s
recognizing whether to trust the AI model, making error
boundaries a critical component of AI-advised human de-
cision making. In fact, appropriate trust in automation is a
topic that has received early attention (Lee and See 2004) as
determinant factor for designing systems that require people
to manage and intervene during imperfect automation.



Human mental models of error boundaries
People create mental models for any system they interact
with (Norman 1988), including AI agents (Kulesza et al.
2012). In AI-advised human decision making, a simple def-
inition for such a model would be m : x′ → {T, F}, in-
dicating which inputs the human trusts the AI to solve cor-
rectly. Here, x′ indicates the features that are available to
the human. A more complex model might compute a prob-
ability and include additional arguments, such as the AI’s
output and its confidence. Further, there may exist a repre-
sentation mismatch– the human may create a mental model
in terms of features that are not identical to the ones used by
the ML model. In fact, in real-world deployments, different
team members may have access to different features. For ex-
ample, a doctor may know information about a patient that is
missing from electronic health records (e.g., patient’s com-
pliance with taking medications), while an AI system may
have access to the most recent results and trends in phys-
iological state. However, mental models can be challeng-
ing to develop. Even when working within the same feature
space, they may not be perfect because users develop them
through a limited number of interactions, and humans have
memory and computation limitations. To illustrate, the solid
line in Figure 1 represents the AI error boundary, while the
dashed line shows a possible human mental model of the
error boundary.

3 Characterizing AI Error Boundaries
We now define properties that may influence peoples’ ability
to create a mental model of an AI’s error boundary. The first
two are the properties of the error boundary itself, while the
third is a property of the task.

Parsimony
The parsimony of an error boundary f is inversely related
to it representational complexity. For example, in Figure 1
parsimony corresponds to the geometric complexity of the
error boundary (solid line). For AI error boundaries formu-
lated in mathematical logic using disjunctive normal form,
complexity depends on the number of conjuncts and liter-
als in f . For example, a hypothetical model may yield in-
correct recommendations for older patients with high blood
pressure or younger patients with low blood pressure. In this
case, the error boundary f would be expressed as {(age =
old ∧ bloodPressure = high) ∨ (age = young ∧
bloodPressure = low)}, which has two conjunctions with
two literals each. This error boundary is more complex and
less parsimonious than one that instead uses only one con-
junction and two literals.

In reality, an error boundary f may belong to any arbi-
trary function class. In this work, we choose to express f
as a disjunction of conjunctions, where literals are pairs of
features and values, so that in our controlled experiments we
can vary the complexity of the error boundary and measure
how it affects the accuracy of humans modeling the true er-
ror boundary. Any other choice of f would make it harder to
do such a comparison and would make additional assump-
tions about the human representation.

Marvin Correct Marvin Wrong
Accept $0.04 -$0.16
Compute 0 0

Table 1: Payoff matrix for the studies. As in high-stakes de-
cisions, workers get 4 cents if they accept Marvin when it is
correct, and lose 16 cents if they accept Marvin when wrong.

Stochasticity
An error boundary f is non-stochastic if it separates all mis-
takes from correct predictions. For example, suppose that for
the application in Figure 1, the error boundary f1 : {age =
young ∧ blood pressure = low} is non-stochastic; this
means that the readmission classifier always errs for young
patients with low blood pressure and is always correct for
other patients. In contrast, consider another boundary, f2,
that separates only 90% of the inputs that satisfy f1. That is,
the model will now be correct for 10% of the young patients
with low blood pressure, making f2 a more stochastic error
boundary than f1.

In practice, an error boundary of a given model might be
stochastic for three different reasons: generalization, repre-
sentation mismatch between the AI and human, and inherent
stochasticity in the outcome being predicted. Generalization
may avoid overfitting by sacrificing instances close to the
decision boundary for the sake of using a less complex, and
hence more parsimonious, model (e.g. a polynomial of a
lower degree). However, this may lead to a more stochas-
tic error boundaries. Representation mismatch, for example,
may result in a case where many instances that differ for the
model appear equal to the human, who cannot understand
why the model occasionally fails or succeeds. Finally, the
learning model itself might also not be able to completely
model the real-world phenomenon due to missing features
or imperfect understanding of feature interactions.

In addition to the properties of the error boundary, the di-
mensionality of the task itself may affect the human’s dis-
coverability of the error boundary.

Task dimensionality
We quantify task dimensionality using the number of fea-
tures defining each instance. With larger numbers of defin-
ing features, the search space of all possible error bound-
aries increases, which may affect how humans create mental
models about error boundaries. In practice, using a larger
number of features may improve AI accuracy but adversely
affect mental models and thus team performance.

4 Experiments
Setup
We now present user studies we performed to build insights
about the factors that may affect peoples’ abilities to cre-
ate a mental model of the AI. The studies were conducted
using CAJA, an open-source, game-like platform that mim-
ics AI-advised human decision making (Bansal et al. 2019).
CAJA is set up in an assembly line scenario, where the task



Figure 2: For each object, a subject can either choose to
use Marvin’s recommendation or perform the task indepen-
dently.

of human subjects is to decide whether or not the objects go-
ing over the pipeline are defective (Figure 2). To decide on
these labels, for each instance, subjects take a recommenda-
tion from an AI system called Marvin and, based on their
mental model of Marvin, decide whether they should accept
the AI recommendation or override it by clicking the com-
pute button. After submitting a choice, the human receives
feedback and monetary reward based on her final decision.
Table 1 shows the payoff scheme used across these experi-
ments, which aims to simulate high-stake decision making
(i.e., the penalty for an incorrect action is much higher than
the reward for a correct one). In this game, subjects are not
supposed to learn how to solve the task. In fact, the decision
boundary is generated randomly and the only way for a par-
ticipant to earn a high score is by learning the error boundary
and relying on the Compute button to acquire the right pre-
diction if Marvin is not to be trusted. This abstracts away
human expertise in problem solving so the focus remains on
the ability to learn the error boundary.

The CAJA platform enables control over many parame-
ters relevant to AI-advised human decision making: task di-
mensionality, AI performance, length of interaction, parsi-
mony and stochasticity of the error boundary, cost of mis-
takes, etc. In the human studies, we systematically vary these
parameters and measure team performance to study the fac-
tors that affect humans’ ability in developing mental models.
Note that game parameters also distinguish between features
that the machine reasons about and those that the human has
access to. More specifically, the platform currently allows
configurations where machine-visible features are a superset
of human-visible ones, which is also the type of configura-
tion we use in the next experiments.

All studies were conducted on Amazon Mechanical Turk.
For every condition we hired 25 workers and on average
workers were paid an hourly wage of $20. To remove spam,
we removed observations from workers whose performance
was in the bottom quartile. We explain results in a question

Figure 3: With more rounds of interaction, users perform
closer to the optimal policy. Blue indicates the rounds when
the AI system (Marvin) is correct and red indicates rounds
when the AI makes an error. As mistakes are more costly
(Table 1), in the beginning and when Marvin makes a mis-
take the difference between the optimal reward and reward
earned by average worker is higher because the users have
an incorrect mental model and fail to override the AI.

and answer format.

Results
Q1: Do people create mental models of the error boundary?
How do mental models evolve with interaction?

We visualize action logs collected by CAJA to understand
the evolution of mental models with more rounds of interac-
tion. Figure 3 shows the average simple regret (i.e., differ-
ence between the optimal and observed reward) of workers’
actions over time (i.e., rounds). The optimal policy is an ora-
cle with access to Marvin’s true error boundary that can thus
always correctly choose when to trust Marvin. We observe
that the simple regret decreases with more interactions, indi-
cating that, on average, workers gradually learn the correct
mental model and perform closer to the optimal policy.

Figure 4 shows the evolution of the mental model for
one particular worker when Marvin’s true error boundary is
non-stochastic, uses one conjunction and two literals, and
task dimensionality is three, i.e., three features describe the
problem space visible to the human. In the beginning, the
worker makes more mistakes (more red crosses) because the
mental model thus far is only partially correct. Eventually,
the worker learns the correct model and successfully com-
pensate for the AI (more red checks). Note that a mental
model may be partially correct for two reasons: it is either
over-generalized or over-fitted. An over-generalized mental
model includes more cases in the error boundary than it
should, for example, when the true error boundary is small
circles, and the over-generalized mental model includes all
small shapes. In contrast, an over-fitted mental model misses
cases that the true error boundary contains. For example,
point (c) of Figure 4 shows where the worker over-fit to
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Figure 4: A visualization of a worker’s behavior that shows how their mental model is refined with continuing interaction.
Here, the score indicates the cumulative reward, and Marvin makes mistakes whenever the object is a small circle. Red markers
indicate such rounds. Cross markers indicate if the worker’s final decision was wrong. Hence, red crosses indicate a false accept
(e.g., (a), (c), and (e)) and result in large negative reward. On the other hand, blue checks indicate a successful accept and result
in a positive reward. Blue crosses indicate a false override and red checks indicate a true override. The figure contains a lot
more crosses before round 45 than after. This indicates that the worker makes most of the wrong decisions in the first half
of the interaction but eventually learns to act optimally. Annotations 1-5 describe the different stages of the worker’s mental
model. For example, by (1) the worker learns to override small red circles presumably because she learned from a previous
wrong decision (a). However, since this mental model is only partially correct, in subsequent rounds (c, e, f) the worker makes
wrong decisions for small blue circles. This causes surprise and confusion at first, but she eventually learns to override small
blue circles by (4). But then in subsequent rounds she makes a wrong decision for a small red circle (5). After this mistake, the
worker finally ties together lessons from all of her previous mistakes, figures out that small circles are problematic irrespective
of the color, and acts optimally thereafter.

small red circles when in fact errors occur for small circles.
Clearly, a combination of both impartialities can also occur
if the human tries to generalize too early on the incorrect
feature literal.

Q2: Do more parsimonious error boundaries facilitate men-
tal model creation?

To answer this question, we compare team performance
of many conditions that vary parsimony by changing the
number of conjunctions and literals. We additionally vary
the number of features to study the effect of parsimony for
different task dimensionality. Figure 5 shows the overall
team performance (cumulative score) for two boundaries of
different complexity: a single conjunction with two literals
(e.g., red and square), and two conjunctions with two literals
each (e.g., red and square or small and circle). Different
features may have different salience; therefore, for the same
formula, we randomly assign different workers isomorphic
error boundaries. For example, the error boundary (red and
square) is isomorphic with the error boundary described

by (blue and circle). Since error boundary complexity
increases with the number of conjunctions, we observe
that a more parsimonious error boundary (i.e., a single
conjunction) results in a higher team performance. Thus,
our results demonstrate the value for learning ML models
with parsimonious error boundaries, for example, by
minimizing the number of conjunctions. In Figure 6, we
observe that team performance generally decreases as
the number of human-visible features increases, which is
consistent with previous findings on human reasoning about
features (Poursabzi-Sangdeh et al. 2018).

Q3: Do less stochastic error boundaries lead to better men-
tal models?
In the previous experiments, Marvin’s error boundary was

non-stochastic (i.e., Marvin made a mistake if and only if the
object satisfied the formula). In practice, error boundaries
may be fuzzier and not as clean. To understand the effect
of stochasticity, we vary two parameters: P (err|¬f), the
conditional probability of error if the object does not satisfy
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Figure 5: Team performance decreases as the number of con-
juncts in the error boundary is increased. Number of literals
were fixed to 2.

the formula, and P (err|f), the conditional probability of er-
ror if the object satisfies the formula. In the non-stochastic
experiments, we use a P ((err|¬f) = 0, P (err|f) = 1))
configuration. The other conditions that we experiment with
are (0, 0.85), (0, 0.7), and (0.15, 0.85). Of these, only the
last condition is two-sided, meaning that errors can occur
on both sides of the boundary although with less probability
when the formula is not satisfied. All other conditions are
one-sided.

Figure 7 shows that for the one-sided error case, the per-
centage of workers who make the correct decision (verti-
cal axis) increases over time. In contrast, for two-sided error
boundaries, workers find it challenging to learn the true er-
ror boundary. In addition, we observe that even for one-sided
error case, increased stochasticity makes it difficult for par-
ticipants to trust Marvin and learn a correct mental model.
For example, the (0, 0.7) condition has clearly more rounds
where Marvin was correct (indicated by circles) and the per-
centage of people who trusted Marvin is less than 50%.

5 Related Work
Mental models for collaboration. Early work explored the
importance of mental models for achieving high perfor-
mance in group work (Grosz and Kraus 1999; Mohammed,
Ferzandi, and Hamilton 2010), human-system collabora-
tion (Rouse, Cannon-Bowers, and Salas 1992), and interface
design (Carroll and Olson 1988). More recently, the impact
of mental models has been revisited for better understanding
human-in-the-loop systems (Chakraborti and Kambhampati
2018) and for grounding human-AI collaboration within tra-
ditional HCI work (Kaur, Williams, and Lasecki 2019). Our
work builds upon these foundations and studies the problem
for AI-advised human decision making. While there exist
many forms of mental modeling (i.e., How does the system
work?) and they are relevant for collaboration, this work fo-

cuses particularly on mental models about system perfor-
mance (i.e., When does the system err?), which are learned
upon context and past experiences.
Backward compatibility. The closest relevant work to this
study that also operates on mental models about error bound-
aries is presented in (Bansal et al. 2019) and focuses on the
usefulness of such models during AI updates highlighting
the importance of remaining backward compatible while de-
ploying a new model. Backward compatibility is measured
through comparing the errors of the previous and the up-
dated version of the model and quantifying the percentage of
all input instances that were correct in the previous version
that remain correct in the updated one. The work showed
that error boundaries that are not backward compatible with
previous versions of the model breaks mental models human
have created in the process of collaboration, and showed that
updates to a more accurate model that is not backward com-
patible can hurt team performance.

In traditional software design, backward compatibility
is a well-studied software property (Bosch 2009; Spring
2005), used to denote software that remains compatible
with a larger legacy ecosystem even after an update. In
the field of AI/ML, a related notion to backward compat-
ibility is catastrophic forgetting (Kirkpatrick et al. 2017;
Goodfellow et al. 2013; McCloskey and Cohen 1989), which
is an anomalous behavior of neural network models that oc-
curs when they are sequentially trained on more instances
and forget to solve earlier instances over time. While forget-
ting in sequential learning is an important problem, back-
ward compatibility is applicable to a larger set of update
scenarios that do not necessarily require more data (e.g. dif-
ferent architecture or the same architecture but with different
parameters).
Interpretability for decision-making. As learning mod-
els are being deployed to assist humans in taking high-
stake decisions, the explainability of machine predictions
is crucial for facilitating human understanding. Ongoing
and prior research has contributed to improving the in-
terpretability of such predictions either by building more
interpretable models (Caruana et al. 2015; Rudin 2018;
Lage et al. 2018) or by imitating complex models via simpler
but more explainable ones (Lakkaraju, Bach, and Leskovec
2016; Tan et al. 2018). However, while explanations help
with understanding, it is not yet clear under which con-
ditions they improve collaboration and human productiv-
ity (Doshi-Velez and Kim 2017; Poursabzi-Sangdeh et al.
2018; Feng and Boyd-Graber 2019). For example, some ex-
planations may describe how the system works but they do
clearly disclose when it will fail and needs human interven-
tion. In other cases, inspecting an explanation might take
just as much time as solving the task from scratch (i.e.,
high cognitive load). Both challenges motivate the need for
predictable and easy-to-learn error boundaries, properties of
which we study in our experimental evaluation. A promis-
ing direction is generating explanations of error boundaries
themselves as a tool for users to quickly learn and remember
various failure conditions. Recent work (Nushi, Kamar, and
Horvitz 2018), uses decision trees to predict and visualize
error boundaries for the purpose of debugging ML models
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Figure 6: a) Team performance decreases as the task dimensionality increases (i.e., number of features). b) Re-visualization of
a) that shows that, for a given number of features, team performance increases with the number of literals in the error boundary,
because the errors become more specific. The solid red lines show this trend. Number of conjuncts was fixed to 1.

but more work is needed on deploying and evaluating such
tools for decision-making.

Modeling and communicating uncertainty in ML. Con-
fidence calibration has been a topic of extensive research,
especially for embracing and communicating uncertainty
in models that are inherently non-probabilistic. Founda-
tional work in this space has proposed techniques for cal-
ibrating output scores for support vector machines (Platt
and others 1999), decision trees and Naı̈ve Bayes mod-
els (Zadrozny and Elkan 2001), and deep neural net-
works (Gal and Ghahramani 2016; Gal 2016; Guo et al.
2017). Later work has proposed data collection algorithms
for addressing overconfident predictions (Lakkaraju et al.
2017; Bansal and Weld 2018). While confidence estimation
and reporting is informative for decision-making, research
in human-centered machine learning (Gillies et al. 2016)
and HCI shows that people have difficulties with correctly
interpreting probabilistic statements (Handmer and Proud-
ley 2007) and even system accuracy itself (Yin, Vaughan,
and Wallach 2019). Research in the intersection of AI and
HCI has found that interaction improves when setting ex-
pectations right about what the system can do and how
well it performs (Kocielnik, Amershi, and Bennett 2019;
Amershi et al. 2019). This paper takes a step forward by
proposing properties of ML models that can assist with set-
ting the right expectations and evaluating them through con-
trolled user studies. Moreover, we envision this line of work
on making error boundaries predictable as complementary
but also valuable for designing better confidence models
as the defined properties. For example, parsimonious error
boundaries are easier to generalize also from a statistical
learning point of view, which would help with calibration.

6 Recommendations for Human-Centered AI
When developing ML models current practices solely target
AI accuracy, even in contexts where models support human
decision making. Our experiments reveal that error bound-
aries and task complexity can influence the success of team-
work. The user studies presented suggest the following con-
siderations when developing ML models to be used in AI-
advised human decision making:

1. Build AI systems with parsimonious error boundaries.

2. Minimize the stochasticity of system errors.

3. Reduce task dimensionality when possible either by elim-
inating features that are irrelevant for both machine and
human reasoning or most importantly by analyzing the
trade-off between the marginal gain of machine perfor-
mance per added feature and the marginal loss of the ac-
curacy of human mental models per added feature.

4. Based on results from Bansal et al. (2019), during
model updates, deploy models whose error boundaries are
backward compatible, i.e. by regularizing in order to min-
imize the introduction of new errors on instances where
the user has learned to trust the system.

Given the importance of these properties on overall team
performance, and potentially of other properties to be dis-
covered in future work, it is essential to make such properties
a part of considerations during model selection. For exam-
ple, if a practitioner is presented with two different models,
h1 and h2, of similar accuracy (e.g., such a situation could
arise as a result of a grid search for hyper-parameter selec-
tion), and the error boundary f1 is more stochastic than f2,
clearly h2 would be the better choice. In a more complex
situation, where h2’s accuracy is slightly inferior to h1’s,
the practitioner must carefully estimate the potential loss in
team accuracy attributed to human mistakes (i.e., trusting the
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Figure 7: For one-sided error boundaries (the top three rows), the percentage of workers who choose the optimal action improves
with time and reaches 100% – the positive slope of the best fit line shows this increasing trend. For the two-sided stochastic
boundary (bottom row), the improvement is minimal and stays close to 50% – the slope of the best fit line is close to 0.

model when it is incorrect) due to stochasticity and compare
this loss to the difference in accuracy between the two can-
didate models. Often, a negligible compromise in ML ac-
curacy, can lead to for a higher gain in accuracy of overall
teamwork. The same analysis could be employed to appraise
the optimal tradeoffs when one human-aware property may
be at odds with another (e.g., making an error boundary
more parsimonious might also make it more stochastic).

Model selection decisions also depend on the type of tools
made available to users for learning and remembering error
boundaries. For example, if users can access a scratchpad
that records and summarizes the observed error boundary in
real time, then they might be able to afford a slightly more
complex error boundary.

Human-aware model selection should also be supported
by making the presented properties part of the optimiza-
tion problem is formulation while training either by includ-
ing human-aware considerations in loss functions or by pos-
ing additional optimization constraints. The former tech-
nique has been used to combine backward compatibility in
the loss function (Bansal et al. 2019) and to combine tree-
based regularization to learn a more interpretable model (Wu
et al. 2018); the latter has found application in domains
like fair classification and healtcare (Dwork et al. 2012;
Zafar et al. 2017; Ustun and Rudin 2017). More effort is
needed to algorithmically ensure error boundary parsimony
and non-stochasticity and combine such efforts for generat-
ing actionable confidence scores. This would reshape learn-
ing techniques to optimize for both the human in the loop
or any other part of the ecosystem that requires reliable trust
contracts to cooperate with the AI.

Finally, as human-AI collaboration becomes more perva-
sive, we foresee further opportunities to study human-AI
team behavior in the open world, and for richer and more
general forms of human-AI teams, for example, cases where

AI recommendation directly updates human’s belief in the
final decision in contrast to our simplified notion of accept
or override. Other opportunities include making interaction
more natural by building computational models about what
users have learned and by simplifying mental model creation
using explanatory tools.

7 Conclusion
We studied the role of human mental models on the human-
AI team performance for AI-advised human decision mak-
ing for situations where people either rely upon or reject AI
inferences. Our results revealed important properties that de-
scribe the error boundaries of inferences that can influence
how well people can collaborate with an AI system and how
efficiently they can override the AI when it fails. We find that
systems with exactly the same accuracy can lead to differ-
ent team performance depending upon the parsimony, non-
stochasticity, and dimensionality of error boundaries. Future
research opportunities include developing methods for in-
tegrating these considerations into algorithmic optimization
techniques. While AI accuracy has been traditionally con-
sidered a convenient proxy for predicting human-AI team
performance, our findings motivate investing effort to un-
derstand how to develop AI systems to support teamwork,
in particular, in making properties of error boundaries more
understandable and learnable when selecting an AI model
for deployment.
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